Skip to main content
Log in

The Strong Version of a Sentential Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

This paper explores a notion of “the strong version” of a sentential logic S, initially defined in terms of the notion of a Leibniz filter, and shown to coincide with the logic determined by the matrices of S whose filter is the least S-filter in the algebra of the matrix. The paper makes a general study of this notion, which appears to unify under an abstract framework the relationships between many pairs of logics in the literature. The paradigmatic examples are the local and the global consequences associated with a normal modal logic, and the logics preserving degrees of truth and preserving truth associated with certain substructural and many-valued logics. For protoalgebraic logics the results in the paper coincide with those obtained by two of the authors in 2001, so the main novelty of the approach is its suitability for all kinds of logics. The paper also studies three kinds of definability of the Leibniz filters, and their consequences for the determination of the strong version. In a second part of the paper several case studies are developed, comprising positive modal logic, Dunn–Belnap’s four-valued logic, the large family of substructural logics, and some relevance logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albuquerque, H., Operators and strong versions in abstract algebraic logic. Ph. D. Dissertation, University of Barcelona, March 2016.

  2. Albuquerque, H., J. M. Font, and R. Jansana, Compatibility operators in abstract algebraic logic. The Journal of Symbolic Logic 81: 417–462, 2016.

    Article  Google Scholar 

  3. Albuquerque, H., J. M. Font, R. Jansana, and T. Moraschini, Assertional logics, truth-equational logics, and the hierarchies of abstract algebraic logic. In J. Czelakowski (ed.), Don Pigozzi on Abstract Algebraic Logic and Universal Algebra, Outstanding Contributions to Logic. Springer, 2016. 25 pp. To appear.

  4. Albuquerque, H., A. Přenosil, and U. Rivieccio, An algebraic view of super-Belnap logics. Submitted manuscript, 2016.

  5. Anderson, A. R., and N. D. Belnap, Entailment, The logic of relevance and necessity, vol. I. Princeton University Press, 1975.

  6. Anderson, A. R., N. D. Belnap, and J. M. Dunn, Entailment. The logic of relevance and necessity, vol. II. Princeton University Press, 1992.

  7. Balbes, R., and P. Dwinger, Distributive lattices. University of Missouri Press, Columbia (Missouri), 1974.

    Google Scholar 

  8. Belnap, N. D., A useful four-valued logic. In J. M. Dunn and G. Epstein (eds.), Modern Uses of Multiple-Valued Logic, Reidel, Dordrecht-Boston, 1977, pp. 8–37. Also included as a chapter of [6].

  9. Blok, W. J., and D. Pigozzi, Algebraizable logics, vol. 396 of Memoirs of the Americal Mathematical Society. A.M.S., Providence, January 1989. Reprinted in the Classic Reprints series, Advanced Reasoning Forum, 2014.

  10. Bou, F., F. Esteva, J. M. Font, A. J. Gil, L. Godo, A. Torrens, and V. Verdú, Logics preserving degrees of truth from varieties of residuated lattices. Journal of Logic and Computation 19: 1031–1069, 2009.

    Article  Google Scholar 

  11. Celani, S., and R. Jansana, A new semantics for positive modal logic. Notre Dame Journal of Formal Logic 38: 1–18, 1997.

    Article  Google Scholar 

  12. Celani, S., and R. Jansana, Priestley duality, a Sahlqvist theorem and a Goldblatt-Thomason theorem for positive modal logic. Logic Journal of the IGPL 7: 683–715, 1999.

    Article  Google Scholar 

  13. Celani, S., and R. Jansana, Bounded distributive lattices with strict implication. Mathematical Logic Quarterly 51: 219–246, 2005.

    Article  Google Scholar 

  14. Czelakowski, J., Protoalgebraic logics, vol. 10 of Trends in Logic - Studia Logica Library. Kluwer Academic Publishers, Dordrecht, 2001.

  15. Dunn, J. M., Positive modal logic. Studia Logica 55: 301–317, 1995.

    Article  Google Scholar 

  16. Font, J. M., Belnap’s four-valued logic and De Morgan lattices. Logic Journal of the IGPL 5: 413–440, 1997.

    Article  Google Scholar 

  17. Font, J. M., An abstract algebraic logic view of some multiple-valued logics. In M. Fitting and E. Orlowska (eds.), Beyond two: Theory and applications of multiple-valued logic, vol. 114 of Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg, 2003, pp. 25–58.

    Chapter  Google Scholar 

  18. Font, J. M., On substructural logics preserving degrees of truth. Bulletin of the Section of Logic 36: 117–130, 2007.

    Google Scholar 

  19. Font, J. M., Taking degrees of truth seriously. Studia Logica (Special issue on Truth Values, Part I) 91: 383–406, 2009.

  20. Font, J. M., On semilattice-based logics with an algebraizable assertional companion. Reports on Mathematical Logic 46: 109–132, 2011.

    Google Scholar 

  21. Font, J. M., Abstract Algebraic Logic – An Introductory Textbook, vol. 60 of Studies in Logic. College Publications, London, 2016.

  22. Font, J. M., A. J. Gil, A. Torrens, and V. Verdú, On the infinite-valued Łukasiewicz logic that preserves degrees of truth. Archive for Mathematical Logic 45: 839–868, 2006.

    Article  Google Scholar 

  23. Font, J. M., and R. Jansana, Leibniz filters and the strong version of a protoalgebraic logic. Archive for Mathematical Logic 40: 437–465, 2001.

    Article  Google Scholar 

  24. Font, J. M., and R. Jansana, A general algebraic semantics for sentential logics. Second revised edition, vol. 7 of Lecture Notes in Logic. Association for Symbolic Logic, 2009. Electronic version freely available through Project Euclid at http://projecteuclid.org/euclid.lnl/1235416965. First edition published by Springer-Verlag, 1996.

  25. Font, J. M., and R. Jansana, Leibniz-linked pairs of deductive systems. Studia Logica (Special issue in honor of Ryszard Wójcicki on the occasion of his 80th birthday) 99: 171–202, 2011.

  26. Font, J. M., R. Jansana, and D. Pigozzi, A survey of abstract algebraic logic. Studia Logica (Special issue on Abstract Algebraic Logic, Part II) 74: 13–97, 2003. With an update in vol. 91: 125–130, 2009.

  27. Font, J. M., and G. Rodríguez, Note on algebraic models for relevance logic. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 36: 535–540, 1990.

    Article  Google Scholar 

  28. Font, J. M., and G. Rodríguez, Algebraic study of two deductive systems of relevance logic. Notre Dame Journal of Formal Logic 35: 369–397, 1994.

    Article  Google Scholar 

  29. Galatos, N., P. Jipsen, T. Kowalski, and H. Ono, Residuated lattices: an algebraic glimpse at substructural logics, vol. 151 of Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam, 2007.

  30. Jansana, R., Full models for positive modal logic. Mathematical Logic Quarterly 48: 427–445, 2002.

    Article  Google Scholar 

  31. Jansana, R., Leibniz filters revisited. Studia Logica 75: 305–317, 2003.

    Article  Google Scholar 

  32. Jansana, R., Selfextensional logics with a conjunction. Studia Logica 84: 63–104, 2006.

    Article  Google Scholar 

  33. Jansana, R., Algebraizable logics with a strong conjunction and their semi-lattice based companions. Archive for Mathematical Logic 51: 831–861, 2012.

    Article  Google Scholar 

  34. Olson, J. S., J. G. Raftery, and C. J. van Alten, Structural completeness in substructural logics. Logic Journal of the IGPL 16: 455–495, 2008.

    Article  Google Scholar 

  35. Pietz, A., and U. Rivieccio, Nothing but the truth. Journal of Philosophical Logic 42: 125–135, 2013.

    Article  Google Scholar 

  36. Raftery, J. G., The equational definability of truth predicates. Reports on Mathematical Logic (Special issue in memory of Willem Blok) 41: 95–149, 2006.

    Google Scholar 

  37. Raftery, J. G., and K. Świrydowicz, Structural completeness in relevance logics. Studia Logica 104: 381–387, 2016.

    Article  Google Scholar 

  38. Rivieccio, U., An infinity of super-Belnap logics. Journal of Applied Non-Classical Logics 22: 319–335, 2012.

    Article  Google Scholar 

  39. Troelstra, A. S., Lectures on Linear Logic, vol. 29 of CSLI Lecture Notes. CSLI Publications, Stanford, 1992. Distributed by University of Chicago Press.

  40. Wójcicki, R., Lectures on propositional calculi. Ossolineum, Wrocław, 1984.

    Google Scholar 

  41. Wójcicki, R., Theory of logical calculi. Basic theory of consequence operations, vol. 199 of Synthèse Library. Reidel, Dordrecht, 1988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Albuquerque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albuquerque, H., Font, J.M. & Jansana, R. The Strong Version of a Sentential Logic. Stud Logica 105, 703–760 (2017). https://doi.org/10.1007/s11225-017-9709-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-017-9709-0

Keywords

Navigation