Skip to main content

Advertisement

Log in

Convex MV-Algebras: Many-Valued Logics Meet Decision Theory

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

This paper introduces a logical analysis of convex combinations within the framework of Łukasiewicz real-valued logic. This provides a natural link between the fields of many-valued logics and decision theory under uncertainty, where the notion of convexity plays a central role. We set out to explore such a link by defining convex operators on MV-algebras, which are the equivalent algebraic semantics of Łukasiewicz logic. This gives us a formal language to reason about the expected value of bounded random variables. As an illustration of the applicability of our framework we present a logical version of the Anscombe–Aumann representation result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anscombe, J., and R. Aumann, A definition of subjective probability. The Annals of Mathematical Statistics 34(1):199–205, 1963.

    Article  Google Scholar 

  2. Bernays, P., Axiomatische Untersuchungen des Aussagen-Kalkuls der “Principia Mathematica”. Mathematische Zeitschrift 25:305320, 1926.

    Article  Google Scholar 

  3. Birkhoff, G., Lattice Theory, 3rd edn., Vol. 5, AMS Colloquium Publications, Providence, 1973.

  4. Bochvar, D. A., Ob odnom trechznacnom iscislenii i ego primenenii k analizu paradoksov klassiceskogo rassirennogo funkcionalnogo iscislenija, Matematiceskij Sbornik 4(46):287–308, 1938. [English translation: Bochvar, D. A., On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus, History and Philosophy of Logic 2:87–112.]

  5. Brown, N. P., Topological dynamical systems associated to II\(_1\)-factors, Advances in Mathematics 227(4):1665–1699, 2011.

    Article  Google Scholar 

  6. Burris, S. N., and H. P. Sankappanavar, A Course in Universal Algebra, Springer, New York, 1981.

    Book  Google Scholar 

  7. Fishburn, P., Utility Theory for Decision Making, Wiley, New York, 1970.

    Book  Google Scholar 

  8. Capraro, V., and T. Fritz, On the axiomatization of convex subsets of Banach spaces, Proceedings of the American Mathematical Society 141:2127–2135, 2013.

    Article  Google Scholar 

  9. Chang, C. C., Algebraic analysis of many-valued logics, Transactions of the American Mathematical Society 88:467–490, 1958.

    Article  Google Scholar 

  10. Cignoli, R., I. M. L. D’Ottaviano, and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer, Dordrecht, 2000.

    Book  Google Scholar 

  11. Di Nola, A., and A. Dvurečenskij, Product MV-algebras, Multiple-Valued Logics 6:193–215, 2001.

    Google Scholar 

  12. Di Nola, A., and I. Leuştean, Łukasiewicz Logic and MV-algebras, in P. Cintula et al. (eds.), Handbook of Mathematical Fuzzy Logic, Vol. II. Studies in Logic 37, College Publications, London, 2011.

  13. Di Nola, A., and I. Leuştean, Łukasiewicz logic and Riesz spaces, Soft Computing 18(12):2349–2363, 2014.

    Article  Google Scholar 

  14. Diaconescu, D., and I. Leuştean, The Riesz hull of a semisimple MV-algebra, Mathematica Slovaca (special issue in honor of Antonio Di Nola) 65(4):801–816, 2015.

    Google Scholar 

  15. Duddy, C., and A. Piggins, Many-valued judgment aggregation: characterizing the possibility/impossibility boundary, Journal of Economic Theory 148(2):793–805, 2013.

    Article  Google Scholar 

  16. Dvurečenskij, A., Pseudo MV-algebras are intervals in \(\ell \)-groups, Journal of Australian Mathematical Society 72:427–445, 2002.

    Article  Google Scholar 

  17. Dvurečenskij, A., On partial addition in pseudo MV-algebras, in Proceedings of the Fourth International Symposium on Economic Informatics, 1999, pp. 952–960.

  18. Flaminio, T., and T. Kroupa, States of MV-algebras, in P. Cintula et al. (eds.), Handbook of Mathematical Fuzzy Logic, Vol. III, in print.

  19. Flaminio, T., and F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, International Journal of Approximate Reasoning 50(1):138–152, 2009.

    Article  Google Scholar 

  20. Fritz, T., Convex Spaces I: Definition and Examples, Manuscript, available online at arXiv:0903.5522.

  21. Gilboa, I., Decision Theory Under Uncertainty, Cambridge University Press, Cambridge, 2001.

  22. Gilboa, I., and M. Marinacci, Ambiguity and the Bayesian approach, in D. Acemoglu, M. Arellano, and E. Dekel (eds.), Advances in Economics and Econometrics: Theory and Applications, Tenth World Congress of the Econometric Society, Cambridge University Press, New York, 2013.

  23. Gottwald, S., A Treatise on Many-Valued Logics, Oxford University Press, Oxford, 2001.

    Google Scholar 

  24. Gul, F., Savage’s theorem with a finite number of states, Journal of Economic Theory 57(1):99–110, 1992.

    Article  Google Scholar 

  25. Hájek, P., Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, 1998.

    Book  Google Scholar 

  26. Horčík, R., and P. Cintula, Product Łukasiewicz logic, Archive for Mathematical Logic 43(4):477–503, 2004.

    Article  Google Scholar 

  27. Kleene, S. C., On notation for ordinal numbers, Journal Symbolic Logic 3:150–155, 1938.

    Article  Google Scholar 

  28. Kreps, D., Notes on the Theory of Choice. Underground Classics in Economics, Westview Press, Colorado, 1988.

  29. Kroupa, T., Every state on semisimple MV-algebra is integral, Fuzzy Sets and Systems 157:2771–2782, 2006.

    Article  Google Scholar 

  30. Lapenta, S., and I. Leuştean, Towards understanding the Pierce–Birkhoff conjecture via MV-algebras, Fuzzy Sets and Systems 276:114–130, 2015.

    Article  Google Scholar 

  31. Lapenta, S., and I. Leuştean, Scalar extensions for the algebraic structures of Łukasiewicz logic, Journal of Pure and Applied Algebra 220:1538–1553, 2016.

    Article  Google Scholar 

  32. LOFT, Logic and the Foundations of Games and Decision Theory, http://faculty.econ.ucdavis.edu/faculty/bonanno/loft.html.

  33. Łukasiewicz, J., O logice trójwartościowej, Ruch Filozoficzny 5:170–171, 1920. (English translation in L. Borkowski (ed.), Selected Works by Jan Łukasiewicz, North-Holland, Amsterdam, 1970.)

  34. Łukasiewicz, J., and A. Tarski, Untersuchungen ber den Aussagenkalkl,Comptes rendus de la Socit des Sciences et des Lettres de Varsovie, cl. iii 23:1–21, 1930.

  35. Metcalfe, G., F. Paoli, and C. Tsinakis, Ordered algebras and logic, in H. Hosni and F. Montagna (eds.), Probability, Uncertainty and Rationality, CRM Series, Edizioni della Normale, Pisa, 2010, pp. 1–81.

  36. McNaughton, R., A theorem about infinite-valued sentential logic, Journal of Symbolic Logic 16:1–13, 1951.

    Article  Google Scholar 

  37. Mongin, P., The doctrinal paradox, the discursive dilemma, and logical aggregation theory, Theory and Decision 73(3):315–355, 2012.

    Article  Google Scholar 

  38. Montagna, F., An algebraic approach to Propositional Fuzzy Logic, Journal of Logic, Language and Information 9:91–124, 2000.

    Article  Google Scholar 

  39. Montagna, F., Subreducts of MV-algebras with product and product residuation, Algebra Universalis 53:109–137, 2005.

    Article  Google Scholar 

  40. Mundici, D., Interpretation of ACF*-algebras in Łukasiewicz sentential calculus, Journal of Functional Analysis 65:15–63, 1986.

    Article  Google Scholar 

  41. Mundici, D., Averaging the Truth-Value in Łukasiewicz Logic, Studia Logica 55:113–127, 1995.

    Article  Google Scholar 

  42. Mundici, D., Advanced Łukasiewicz Calculus and MV Algebras, Trends in Logic 35, Springer, Dordrecht, 2011.

    Chapter  Google Scholar 

  43. Nelson, E., Radically Elementary Probability Theory, Annals of Mathematics Studies, Princeton University Press, Princeton, 1987.

  44. Neumann, J., and O. Morgenstern, The Theory of Games and Economic Behavior, 3rd edn, Princeton University Press, Princeton, 1953.

    Google Scholar 

  45. Panti, G., Invariant measures in free MV-algebras, Communications in Algebra 36:2849–2861, 2008.

    Article  Google Scholar 

  46. Savage, L. J., The Foundations of Statistics, 2nd edn, Dover, New York, 1972.

  47. TARK, Theoretical Aspects of Rationality and Knowledge, http://www.tark.org.

  48. van de Vel, M. L. J., Theory of Convex Structures, North-Holland Mathematical Library, North-Holland, Amsterdam, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Flaminio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flaminio, T., Hosni, H. & Lapenta, S. Convex MV-Algebras: Many-Valued Logics Meet Decision Theory. Stud Logica 106, 913–945 (2018). https://doi.org/10.1007/s11225-016-9705-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-016-9705-9

Keywords

Navigation