Studia Logica

, Volume 105, Issue 1, pp 13–35

# On the Modal Logic of Subset and Superset: Tense Logic over Medvedev Frames

Article

## Abstract

Viewing the language of modal logic as a language for describing directed graphs, a natural type of directed graph to study modally is one where the nodes are sets and the edge relation is the subset or superset relation. A well-known example from the literature on intuitionistic logic is the class of Medvedev frames $${\langle W, R\rangle}$$ where W is the set of nonempty subsets of some nonempty finite set S, and xRy iff $${x\supseteq y}$$, or more liberally, where $${\langle W, R\rangle}$$ is isomorphic as a directed graph to $${\langle \wp(S)\setminus\{\emptyset\},\supseteq\rangle}$$. Prucnal (Stud Logica 38(3):247–262, 1979) proved that the modal logic of Medvedev frames is not finitely axiomatizable. Here we continue the study of Medvedev frames with extended modal languages. Our results concern definability. We show that the class of Medvedev frames is definable by a formula in the language of tense logic, i.e., with a converse modality for quantifying over supersets in Medvedev frames, extended with any one of the following standard devices: nominals (for naming nodes), a difference modality (for quantifying over those y such that $${x\not= y}$$), or a complement modality (for quantifying over those y such that $${x\not\supseteq y}$$). It follows that either the logic of Medvedev frames in one of these tense languages is finitely axiomatizable—which would answer the open question of whether Medvedev’s (Sov Math Dokl 7:857–860, 1966) “logic of finite problems” is decidable—or else the minimal logics in these languages extended with our defining formulas are the beginnings of infinite sequences of frame-incomplete logics.

## Keywords

Medvedev frames Modal logic Definability Nominal tense logic Difference modality Complement modality Axiomatizability Kripke frame incompleteness

## References

1. 1.
van Benthem J. F. A. K., Blok W. J.: Transitivity follows from Dummett’s axiom. Theoria 44(2), 117–118 (1978)
2. 2.
van Benthem J.: Minimal deontic logics (Abstract). Bulletin of the Section of Logic 8(1), 36–41 (1979)Google Scholar
3. 3.
van Benthem J.: The range of modal logic. Journal of Applied Non-Classical Logics 9(2), 407–442 (1999)
4. 4.
van Benthem, J., Correspondence theory, in D. M. Gabbay, and F. Guenthner, (eds.), Handbook of Philosophical Logic, vol. 3, 2 edn., Springer, Dordrecht, 2001, pp. 325–408.Google Scholar
5. 5.
van Benthem, J. and G. Bezhanishvili, Modal logics of space, in M. Aiello, I. Pratt-Hartmann, and J. van Benthem, (eds.), Handbook of Spatial Logics, Springer, New York, 2007, pp. 217–298.Google Scholar
6. 6.
Bezhanishvili, N., and B. ten Cate, Transfer results for hybrid logic. Part I: the case without satisfaction operators, Journal of Logic and Computation 16(2):177–197, 2006.Google Scholar
7. 7.
Blackburn P.: Nominal tense logic. Notre Dame Journal of Formal Logic 34(1), 56–83 (1993)
8. 8.
Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge University Press, New York, 2001.Google Scholar
9. 9.
Boolos, G., The Logic of Provability, Cambridge University Press, New York, 1995.Google Scholar
10. 10.
ten Cate, B., Model theory for extended modal languages, Ph.D. thesis, University of Amsterdam, 2005. ILLC Dissertation Series DS-2005-01.Google Scholar
11. 11.
ten Cate, B., and T. Litak, The importance of being discrete, Technical Report PP-2007-39, Institute for Logic, Language and Computation, University of Amsterdam, 2007.Google Scholar
12. 12.
Chagrov, A., and M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford, 1997.Google Scholar
13. 13.
Fine K.: An ascending chain of S4 logics. Theoria 40(2), 110–116 (1974)
14. 14.
Fontaine, G., Axiomatization of ML and Cheq, Master’s thesis, University of Amsterdam, 2006. ILLC Master of Logic Series MoL-2006-08.Google Scholar
15. 15.
Fontaine, G., ML is not finitely axiomatizable over Cheq, in G. Governatori, I. Hodkinson, and Y. Venema, (eds.), Advances in Modal Logic, vol. 6, College Publications, London, 2006, pp. 139–146.Google Scholar
16. 16.
Gabbay D. M.: The decidability of the Kreisel–Putnam system. The Journal of Symbolic Logic 35(3), 431–437 (1970)
17. 17.
Gargov G., Goranko V.: Modal logic with names. Journal of Philosophical Logic 22(6), 607–636 (1993)
18. 18.
Gargov, G., and S. Passy, A note on Boolean modal logic, in P. P. Petkov, (ed.), Mathematical Logic, Plenum Press, New York, 1990, pp. 299–309.Google Scholar
19. 19.
Gargov, G., S. Passy, and T. Tinchev, Modal environment for Boolean speculations, in D. Scordev, (ed.), Mathematical Logic and Its Applications, Plenum Press, New York, 1987, pp. 253–263.Google Scholar
20. 20.
Goranko, V., Completeness and incompleteness in the bimodal base $${\mathcal{L}(R,-R)}$$, in P. P. Petkov, (ed.), Mathematical Logic, Plenum Press, New York, 1990, pp. 311–326.Google Scholar
21. 21.
Goranko V.: Modal definability in enriched languages. Notre Dame Journal of Formal Logic 31(1), 81–105 (1990)
22. 22.
Goranko V., Passy S.: Using the universal modality: gains and questions. Journal of Logic and Computation 2(1), 5–30 (1992)
23. 23.
Goranko V., Vakarelov D.: Sahlqvist formulas in hybrid polyadic modal logics. Journal of Logic and Computation 11(5), 737–754 (2001)
24. 24.
Hamkins J. D., Leibman G., Löwe B.: Structural connections between a forcing class and its modal logic. Israel Journal of Mathematics 207(2), 617–651 (2015)
25. 25.
Hamkins J. D., Löwe B.: The modal logic of forcing. Transactions of the American Mathematical Society 360(4), 1793–1817 (2008)
26. 26.
Humberstone L.: Inaccessible worlds. Notre Dame Journal of Formal Logic 24(3), 346–352 (1983)
27. 27.
Humberstone L.: Modal logic for other-world agnostics: neutrality and Halldén completeness. Journal of Philosophical Logic 36(1), 1–32 (2007)
28. 28.
Jech, T., Multiple Forcing, Cambridge University Press, Cambridge, 1986.Google Scholar
29. 29.
Maksimova L. L., Shehtman V. B., Skvortsov D. P.: The impossibility of a finite axiomatization of Medvedev’s logic of finitary problems. Soviet Mathematics Doklady 20, 394–398 (1979)Google Scholar
30. 30.
Medvedev Y. T.: Finite problems. Soviet Mathematics Doklady 3, 227–230 (1962)Google Scholar
31. 31.
Medvedev Y. T.: Interpretation of logical formulas by means of finite problems. Soviet Mathematics Doklady 7, 857–860 (1966)Google Scholar
32. 32.
Prucnal T.: On two problems of Harvey Friedman. Studia Logica 38(3), 247–262 (1979)
33. 33.
de Rijke M.: The modal logic of inequality. The Journal of Symbolic Logic 57(2), 566–584 (1992)
34. 34.
Segerberg K.: A note on the logic of elsewhere. Theoria 46(2–3), 183–187 (1980)Google Scholar
35. 35.
Shehtman V. B., Skvortsov D. P.: Logics of some Kripke frames connected with Medvedev notion of informational types. Studia Logica 45(1), 101–118 (1986)
36. 36.
Shehtman V.: Modal counterparts of Medvedev logic of finite problems are not finitely axiomatizable. Studia Logica 49(3), 365–385 (1990)
37. 37.
Skvortsov D. P.: Logic of infinite problems and Kripke models on atomic semilattices of sets. Soviet Mathematics Doklady 20, 360–363 (1979)Google Scholar
38. 38.
Vakarelov, D., Modal characterization of the classes of finite and infinite quasi-ordered sets, in P. P. Petkov, (ed.), Mathematical Logic, Plenum Press, New York, 1990, pp. 373–387.Google Scholar