Studia Logica

, Volume 104, Issue 2, pp 365–379 | Cite as

James W. Garson, Modal Logic for Philosophers. Second Edition, Cambridge University Press, Cambridge, 2013, pp. 506. ISBN: 978-1107609525 (paperback) $44.99.

Book Reviews


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beall, J. C., Review of [12], Note Dame Philosophical Reviews 2007.06.01.Google Scholar
  2. 2.
    Ben-Menachem, M., Review of [12], ACM SIGSOFT Software Engineering Notes 33 #3 (May 2008), 31.Google Scholar
  3. 3.
    Buvač, S., A Deduction Theorem for Normal Modal Propositional Logic, pp. 107–115 in P. Blackburn et al. (eds.), CONTEXT 2003, Lecture Notes in Artificial Intelligence #2680, Springer, Berlin 2003.Google Scholar
  4. 4.
    Chellas B. F.: Modalities in Normal Systems Containing the S5 Axiom, pp. 261–265. C. Diamond, and J. Teichman, (eds.) Intention and Intentionality: Essays in Honour of G. E. M. Anscombe, Harvester Press, Brighton (1979)Google Scholar
  5. 5.
    Chellas, B. F., Modal Logic: An Introduction, Cambridge University Press, Cambridge 1980. Reprinted (with corrections) 1988 and subsequently.Google Scholar
  6. 6.
    Chellas B. F., Segerberg K.: Modal Logics in the Vicinity of S1. Notre Dame Journal of Formal Logic 37, 1–25 (1996)CrossRefGoogle Scholar
  7. 7.
    Fitch F. B.: Symbolic Logic: An Introduction. The Ronald Press Company, NY (1952)Google Scholar
  8. 8.
    Fitch F. B.: Natural Deduction Rules for Obligation. American Philosophical Quarterly 3, 27–38 (1966)Google Scholar
  9. 9.
    Garson J. W.: Two New Interpretations of Modality. Logique et Analyse 15, 443–459 (1972)Google Scholar
  10. 10.
    Garson J. W.: Prepositional Logic. Logique et Analyse 24, 3–33 (1981)Google Scholar
  11. 11.
    Garson, J. W., Quantification in Modal Logic, in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic (Second Edition), Volume 3, 2001, pp. 267–323.Google Scholar
  12. 12.
    Garson J. W.: Modal Logic for Philosophers, First Edn., Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  13. 13.
    Girle, R. A., Modal Logics and Philosophy, Acumen, Teddington, UK 2000. Second edition 2009.Google Scholar
  14. 14.
    Girle R. A.: Review of [12]. Theoria 74, 86–90 (2008)CrossRefGoogle Scholar
  15. 15.
    Hawthorn J.: Natural Deduction in Normal Modal Logic. Notre Dame Journal of Formal Logic 31, 263–273 (1990)CrossRefGoogle Scholar
  16. 16.
    Hazen A.P., Pelletier F. J.: Gentzen and Jaśkowski Natural Deduction: Fundamentally Similar but Importantly Different. Studia Logica 102, 1103–1142 (2014)CrossRefGoogle Scholar
  17. 17.
    Humberstone L.: Heterogeneous Logic. Erkenntnis 29, 395–435 (1988)CrossRefGoogle Scholar
  18. 18.
    Humberstone L.: Weaker-to-Stronger Translational Embeddings in Modal Logic, in: Governatori, G., Hodkinson, I., Venema Y., (eds.) Advances in Modal Logic, Vol. 6, pp. 279–297. College Publications, London (2006)Google Scholar
  19. 19.
    Humberstone, L., The Connectives, MIT Press, Cambridge MA 2011.Google Scholar
  20. 20.
    Lewis D.: Intensional Logics Without Iterative Axioms. Journal of Philosophical Logic 3, 457–466 (1974)CrossRefGoogle Scholar
  21. 21.
    Nagle M. C., Thomason S. K.: The Extensions of the Modal Logic K5. Journal of Symbolic Logic 50, 102–109 (1985)CrossRefGoogle Scholar
  22. 22.
    Priest, G., An Introduction to Non-Classical Logic, Cambridge University Press, Cambridge 2001. Second edition 2008: An Introduction to Non-Classical Logic: From If to Is.Google Scholar
  23. 23.
    Prinz J.: Furnishing the Mind: Concepts and Their Perceptual Basis. MIT Press, Cambridge, MA (2002)Google Scholar
  24. 24.
    Rescher, N., and A. Urquhart, Temporal Logic, Springer-Verlag, NY 1971.Google Scholar
  25. 25.
    Restall, G., An Introduction to Substructural Logics, Routledge, London 2000.Google Scholar
  26. 26.
    Siemens D. F.: Fitch-style Rules for Many Modal Logics. Notre Dame Journal of Formal Logic 18, 631–636 (1977)CrossRefGoogle Scholar
  27. 27.
    27 Stephanou Y.: Review of Girle [13]. Metascience 20, 385–388 (2011)CrossRefGoogle Scholar
  28. 28.
    Temkin L. S.: A Continuum Argument for Intransitivity. Philosophy & Public Affairs 25, 175–210 (1996)CrossRefGoogle Scholar
  29. 29.
    Wisdom W. A.: Possibility-Elimination in Natural Deduction. Notre Dame Journal of Formal Logic 5, 295–298 (1964)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Monash UniversityMelbourneAustralia

Personalised recommendations