Studia Logica

, Volume 103, Issue 6, pp 1245–1278 | Cite as

Dual Erotetic Calculi and the Minimal \({\mathsf{LFI}}\)

  • Szymon Chlebowski
  • Dorota Leszczyńska-Jasion
Open Access


An erotetic calculus for a given logic constitutes a sequent-style proof-theoretical formalization of the logic grounded in Inferential Erotetic Logic (\({\mathsf{IEL}}\)). In this paper, a new erotetic calculus for Classical Propositional Logic (\({\mathsf{CPL}}\)), dual with respect to the existing ones, is given. We modify the calculus to obtain complete proof systems for the propositional part of paraconsistent logic \({\mathsf{CLuN}}\) and its extensions \({\mathsf{CLuNs}}\) and \({\mathsf{mbC}}\). The method is based on dual resolution. Moreover, the resolution rule is non-clausal. According to the authors knowledge, this is the first account of resolution for \({\mathsf{mbC}}\). Last but not least, as the method is grounded in \({\mathsf{IEL}}\), it constitutes an important tool for the so-called question-processing.


Inferential Erotetic Logic Proof theory of paraconsistent logics \({\mathsf{mbC}}\) \({\mathsf{CLuN}}\) \({\mathsf{CLuNs}}\) Dual resolution 


  1. 1.
    Avron, A., The method of hypersequents in the proof theory of propositional non-classical logics, in W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, (eds.), Logic: Foundations to Applications, Oxford Science Publications, New York, 1996, pp. 1–32.Google Scholar
  2. 2.
    Batens D.: Paraconsistent extensional propositional logics. Logique et Analyse 90–91, 195–234 (1980)Google Scholar
  3. 3.
    Batens, D., Inconsistency-adaptive logics, in E. Orłowska, (ed.), Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, Springer Verlag, Heidelberg, 1998, pp. 445–472.Google Scholar
  4. 4.
    Batens, D., and K. De Clercq, A rich paraconsistent extension of full positive logic, Logique et Analyse 185–188:227–257, 2005.Google Scholar
  5. 5.
    Batens, D., K. De Clercq, and N. Kurtonina, Embedding and interpolation for some paralogics. The propositional case, Reports on Mathematical Logic 33:29–44, 1999.Google Scholar
  6. 6.
    Batens, D., and J. Meheus, A tableau method for inconsistency-adaptive logics, in R. Dyckhoff, (ed.), Automated Reasoning with Analytic Tableaux and Related Methods, Springer, Dordrecht, 2000, pp. 127–142.Google Scholar
  7. 7.
    Carnielli, W. A., and M. E. Coniglio, Logics of formal inconsistency, in F. Guenthner and Dov M. Gabbay, (eds.), Handbook of Philosophical Logic, vol. 14, Springer, Dordrecht, 2013, pp. 1–93.Google Scholar
  8. 8.
    Carnielli, W. A., and J. Marcos, A taxonomy of \({\mathbf{C}}\)-systems, in I. M. L. D’Ottaviano, W. A. Carnielli, and M. E. Coniglio, (eds.), Paraconsistency—The Logical Way to the Inconsistent, Marcel Dekker, New York, 2000, pp. 1–94.Google Scholar
  9. 9.
    Coniglio, M. E., and T. G. Rodrigues, Some investigations on \({\mathsf{mbC}}\) and \({\mathsf{mCi}}\), in C. A. Mortari, (ed.), Tópicos de lógicas não clássicas, NEL/UFSC, Florianópolis, 2014, pp. 11–70.Google Scholar
  10. 10.
    Fitting M.: First-Order Logic and Automated Theorem Proving. Springer Verlag, Berlin (1990)CrossRefGoogle Scholar
  11. 11.
    Indrzejczak, A., Natural Deduction, Hybrid Systems and Modal Logics, vol. 30 of Trends in Logic, Springer, Dordrecht, 2010.Google Scholar
  12. 12.
    Indrzejczak, A., A survey of nonstandard sequent calculi, Studia Logica 102(6):1295–1322, 2014.Google Scholar
  13. 13.
    Leszczyńska, D., Socratic proofs for some normal modal propositional logics, Logique et Analyse 47(185–188):259–285, 2004.Google Scholar
  14. 14.
    Leszczyńska-Jasion D.: The Method of Socratic Proofs for Normal Modal Propositional Logics. Adam Mickiewicz University Press, Poznań (2007)Google Scholar
  15. 15.
    Leszczyńska-Jasion, D., The method of Socratic proofs for modal propositional logics: K5, S4.2, S4.3, S4M, S4F, S4R and G, Studia Logica 89(3):371–405, 2008.Google Scholar
  16. 16.
    Leszczyńska-Jasion, D., M. Urbański, and A. Wiśniewski, Socratic trees, Studia Logica 101(5):959–986, 2013.Google Scholar
  17. 17.
    Ligeza, A., Logical Foundations for Rule-Based Systems, vol. 11 of Studies in Computational Intelligence, Springer, Heidelberg, 2006.Google Scholar
  18. 18.
    Negri S., von Plato J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  19. 19.
    Neto, A. G. S. S., and M. Finger, Effective prover for minimal inconsistency logic, in M. Bramer, (ed.), IFIP International Federation for Information Processing, Springer, New York, 2006, pp. 465–474.Google Scholar
  20. 20.
    Robinson J. A.: A machine oriented logic based on the resolution principle. Journal of the ACM 12, 23–41 (1965)CrossRefGoogle Scholar
  21. 21.
    Skura T. F.: Intuitionistic Socratic procedures. Journal of Applied Non-Classical Logics 15(4), 453–464 (2005)CrossRefGoogle Scholar
  22. 22.
    Skura, T. F., Refutation systems in propositional logic, in F. Guenthner and D. M. Gabbay, (eds.), Handbook of Philosophical Logic, vol. 16, Springer, New York, 2011, pp. 115–157.Google Scholar
  23. 23.
    Smullyan R. M.: First-Order Logic. Springer-Verlag, Berlin (1968)CrossRefGoogle Scholar
  24. 24.
    Troelstra, A. S., and H. Schwichtenberg, Basic Proof Theory, 2nd edn., Camridge University Press, Cambridge, 2000.Google Scholar
  25. 25.
    Wiśniewski A.: The Posing of Questions: Logical Foundations of Erotetic Inferences. Kluwer Academic Publishers, Dordrecht (1995)CrossRefGoogle Scholar
  26. 26.
    Wiśniewski, A., Socratic proofs, Journal of Philosophical Logic 33(3):299–326, 2004.Google Scholar
  27. 27.
    Wiśniewski, A., Questions, Inferences and Scenarios, vol. 46 of Studies in Logic. Logic and Cognitive Systems, College Publications, London, 2013.Google Scholar
  28. 28.
    Wiśniewski A., Shangin V.: Socratic proofs for quantifiers. Journal of Philosophical Logic 35(2), 147–178 (2006)CrossRefGoogle Scholar
  29. 29.
    Wiśniewski, A., and V. Shangin, Open image in new window Open image in new window (Some admissible rules in the system of Socratic proofs), Open image in new window 7(5):77–88, 2007.Google Scholar
  30. 30.
    Wiśniewski A., Vanackere G., Leszczyńska D.: Socratic proofs and paraconsistency: A case study. Studia Logica 80(2–3), 433–468 (2005)Google Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Logic and Cognitive ScienceInstitute of Psychology, Adam Mickiewicz UniversityPoznańPoland

Personalised recommendations