Studia Logica

, Volume 103, Issue 5, pp 1035–1062 | Cite as

Intricate Axioms as Interaction Axioms

  • Guillaume AucherEmail author


In epistemic logic, some axioms dealing with the notion of knowledge are rather convoluted and difficult to interpret intuitively, even though some of them, such as the axioms .2 and .3, are considered to be key axioms by some epistemic logicians. We show that they can be characterized in terms of understandable interaction axioms relating knowledge and belief or knowledge and conditional belief. In order to show it, we first sketch a theory dealing with the characterization of axioms in terms of interaction axioms in modal logic. We then apply the main results and methods of this theory to obtain specific results related to epistemic and doxastic logics.


Modal logic Epistemic logic Interaction axiom Definability of modalities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, E., The Logic of Conditionals, vol. 86 of Synthese Library, Springer, Dordrecht, 1975.Google Scholar
  2. 2.
    Aucher, G., Axioms .2 and .4 as interaction axioms, in C. Baral, G. De Giacomo, and T. Eiter, (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20–24, 2014, AAAI Press, Palo Alto, 2014.Google Scholar
  3. 3.
    Aucher, G., Interdisciplinary Works in Logic, Epistemology, Psychology and Linguistics, vol. 3 of Logic, Argumentation and Reasoning, Chap. Principles of knowledge, belief and conditional belief, Springer, Heidelberg, 2014.Google Scholar
  4. 4.
    Baltag A., Smets S.: Conditional doxastic models: A qualitative approach to dynamic belief revision. Electronic Notes in Theoretical Computer Science 165, 5–21 (2006)CrossRefGoogle Scholar
  5. 5.
    Baltag, A., and S. Smets, Texts in Logic and Games, vol. 4, Chap. The logic of conditional doxastic actions, Amsterdam University Press, Amsterdam, 2008, pp. 9–31.Google Scholar
  6. 6.
    Baltag, A., and S. Smets, Texts in Logic and Games, vol. 3, Chap. A qualitative theory of dynamic interactive belief revision, Amsterdam University Press, Amsterdam, 2008, pp. 9–58.Google Scholar
  7. 7.
    Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, vol. 53 of Cambridge Tracts in Computer Science, Cambridge University Press, Cambridge, 2001.Google Scholar
  8. 8.
    Board O.: Dynamic interactive epistemology. Games and Economic Behavior 49, 49–80 (2004)CrossRefGoogle Scholar
  9. 9.
    Dubois, D., and H. Prade, Possibilistic logic, preferential model and related issue, in Proceedings of the 12th International Conference on Artificial Intelligence (IJCAI), Morgan Kaufman, San Mateo, 1991, pp. 419–425.Google Scholar
  10. 10.
    Fagin R., Halpern J., Moses Y., Vardi M.: Reasoning about Knowledge. MIT Press, Cambridge (1995)Google Scholar
  11. 11.
    Floridi L.: The logic of being informed. Logique et Analyse 49(196), 433–460 (2006)Google Scholar
  12. 12.
    Friedman N., Halpern J.Y.: Modeling belief in dynamic systems, part I: Foundations. Artificial Intelligence 95(2), 257–316 (1997)CrossRefGoogle Scholar
  13. 13.
    Friedman N., Halpern J.Y.: Plausibility measures and default reasoning. Journal of the ACM 48(4), 648–685 (2001)CrossRefGoogle Scholar
  14. 14.
    Gabbay, D.M., A. Kurucz, F. Wolter, and M. Zakharyaschev, Multi-dimensional Modal Logic: Theory and Application, vol. 148 of Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam, 1998.Google Scholar
  15. 15.
    Halpern J.Y.: Should knowledge entail belief?. Journal of Philosophical Logic 25(5), 483–494 (1996)CrossRefGoogle Scholar
  16. 16.
    Halpern J.Y., Samet D., Segev E.: Defining knowledge in terms of belief: the modal logic perspective. The Review of Symbolic Logic 2, 469–487 (2009)CrossRefGoogle Scholar
  17. 17.
    Halpern J.Y., Samet D., Segev E.: On definability in multimodal logic. The Review of Symbolic Logic 2, 451–468 (2009)CrossRefGoogle Scholar
  18. 18.
    Hintikka J.: Knowledge and Belief, An Introduction to the Logic of the Two Notions,. Cornell University Press, Ithaca (1962)Google Scholar
  19. 19.
    Kraus, S., and D. Lehmann, Knowledge, belief and time, in L. Kott, (eds.), Automata, Languages and Programming, vol. 226 of Lecture Notes in Computer Science, Springer, Berlin, 1986, pp. 186–195.Google Scholar
  20. 20.
    Kraus, S., D.J. Lehmann, and M. Magidor, Nonmonotonic reasoning, preferential models and cumulative logics, Artificial Intelligence 44(1–2):167–207, 1990.Google Scholar
  21. 21.
    Lamarre, P., and Y. Shoham, Knowledge, certainty, belief, and conditionalisation (abbreviated version), in KR, 1994, pp. 415–424.Google Scholar
  22. 22.
    Lehrer K., Paxson T.: Knowledge: undefeated justified true belief. The Journal of Philosophy 66, 225–237 (1969)CrossRefGoogle Scholar
  23. 23.
    Lenzen W., Recent Work in Epistemic Logic, Acta Philosophica Fennica 30, North Holland Publishing Company, Amsterdam, 1978.Google Scholar
  24. 24.
    Lenzen W.: Epistemologische betractungen zu [S4;S5]. Erkenntnis 14, 33–56 (1979)CrossRefGoogle Scholar
  25. 25.
    Marx M., Venema Y.: Multi-dimensional Modal Logic. Springer, Dordrecht (1997)CrossRefGoogle Scholar
  26. 26.
    Meyer J.-J.C., van der Hoek W.: Epistemic Logic for AI and Computer Science. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  27. 27.
    Moses Y., Shoham Y.: Belief as defeasible knowledge. Artificial intelligence 64(2), 299–321 (1993)CrossRefGoogle Scholar
  28. 28.
    Shoham Y., Leyton-Brown K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge (2009)Google Scholar
  29. 29.
    Spohn, W., A general non-probabilistic theory of inductive reasoning, in R.D. Shachter, T.S. Levitt, L.N. Kanal, and J.F. Lemmer, (eds.), UAI, North-Holland, Amsterdam, 1988, pp. 149–158.Google Scholar
  30. 30.
    Spohn, W., Ordinal conditional functions: a dynamic theory of epistemic states, in W.L. Harper and B. Skyrms, (eds.), Causation in Decision, Belief Change, and Statistics, vol. 2, Reidel, Dordrecht, 1988, pp. 105–134.Google Scholar
  31. 31.
    Stalnaker R.: On logics of knowledge and belief. Philosophical Studies 128, 169–199 (2006)CrossRefGoogle Scholar
  32. 32.
    van der Hoek W.: Systems for knowledge and belief. Journal of Logic and Computation 3(2), 173–195 (1993)CrossRefGoogle Scholar
  33. 33.
    von Kutschera, F., Einführung in die intensional Semantik, W. de Gruyter, Berlin, 1976.Google Scholar
  34. 34.
    Voorbraak, F., As Far as I know. Epistemic Logic and Uncertainty, PhD thesis, Utrecht University, 1993.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.University of Rennes 1, INRIARennes CedexFrance

Personalised recommendations