Studia Logica

, Volume 102, Issue 4, pp 709–729 | Cite as

Conditional Random Quantities and Compounds of Conditionals

  • Angelo Gilio
  • Giuseppe SanfilippoEmail author


In this paper we consider conditional random quantities (c.r.q.’s) in the setting of coherence. Based on betting scheme, a c.r.q. X|H is not looked at as a restriction but, in a more extended way, as \({XH + \mathbb{P}(X|H)H^c}\) ; in particular (the indicator of) a conditional event E|H is looked at as EHP(E|H)H c . This extended notion of c.r.q. allows algebraic developments among c.r.q.’s even if the conditioning events are different; then, for instance, we can give a meaning to the sum X|H + Y|K and we can define the iterated c.r.q. (X|H)|K. We analyze the conjunction of two conditional events, introduced by the authors in a recent work, in the setting of coherence. We show that the conjoined conditional is a conditional random quantity, which may be a conditional event when there are logical dependencies. Moreover, we introduce the negation of the conjunction and by applying De Morgan’s Law we obtain the disjoined conditional. Finally, we give the lower and upper bounds for the conjunction and disjunction of two conditional events, by showing that the usual probabilistic properties continue to hold.


Conditional events Conditional random quantities Coherence Iterated conditioning Import–Export principle Conjunction Disjunction Lower/upper prevision bounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams E.: The logic of conditionals. Inquiry 8(1–4), 166–197 (1965)CrossRefGoogle Scholar
  2. 2.
    Adams E.: The Logic of Conditionals. Reidel, Dordrecht (1975)CrossRefGoogle Scholar
  3. 3.
    Berti P., Regazzini E., Rigo P.: Well calibrated, coherent forecasting systems. Theory of Probability & Its Applications 42(1), 82–102 (1998)CrossRefGoogle Scholar
  4. 4.
    Biazzo V., Gilio A.: On the linear structure of betting criterion and the checking of coherence. Annals of Mathematics and Artificial Intelligence 35(1–4), 83–106 (2002)CrossRefGoogle Scholar
  5. 5.
    Biazzo V., Gilio A., Lukasiewicz T., Sanfilippo G.: Probabilistic logic under coherence: complexity and algorithms. Annals of Mathematics and Artificial Intelligence 45(1–2), 35–81 (2005)CrossRefGoogle Scholar
  6. 6.
    Biazzo V., Gilio A., Sanfilippo G.: Coherence checking and propagation of lower probability bounds. Soft Computing 7(5), 310–320 (2003)CrossRefGoogle Scholar
  7. 7.
    Biazzo, V., A. Gilio., and G. Sanfilippo, On the checking of g-coherence of conditional probability bounds, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11(Suppl 2):75–104, 2003.Google Scholar
  8. 8.
    Biazzo, V., A. Gilio., and G. Sanfilippo, Generalized coherence and connection property of imprecise conditional previsions, in Proceedings of IPMU’08, Malaga, Spain, 2008, pp. 907–914.Google Scholar
  9. 9.
    Biazzo, V., A. Gilio., and G. Sanfilippo, Coherent conditional previsions and proper scoring rules, in S. Greco et al. (eds.), Advances in Computational Intelligence, vol. 300 of CCIS, Springer-Verlag, Berlin, 2012, pp. 146–156.Google Scholar
  10. 10.
    Bouchon-Meunier B., Coletti G., Marsala C.: Independence and possibilistic conditioning. Annals of Mathematics and Artificial Intelligence 35(1–4), 107–123 (2002)CrossRefGoogle Scholar
  11. 11.
    Bruno G., Gilio A.: Confronto fra eventi condizionati di probabilità à nulla nell’inferenza statistica bayesiana. Rivista di Matematica per le Scienze Economiche e Sociali 2, 141–152 (1985)Google Scholar
  12. 12.
    Calabrese P.: An algebraic synthesis of the foundations of logic and probability. Information Sciences 42(3), 187–237 (1987)CrossRefGoogle Scholar
  13. 13.
    Capotorti A., Vantaggi B.: A general interpretation of conditioning and its implication on coherence. Soft Computing 3(3), 148–153 (1999)CrossRefGoogle Scholar
  14. 14.
    Capotorti A., Lad A., Sanfilippo G.: Reassessing accuracy rates of median decisions. The American Statistician 61(2), 132–138 (2007)CrossRefGoogle Scholar
  15. 15.
    Coletti G., Scozzafava R.: Conditioning and inference in intelligent systems. Soft Computing 3(3), 118–130 (1999)CrossRefGoogle Scholar
  16. 16.
    Coletti G., Scozzafava R.: From conditional events to conditional measures: a new axiomatic approach. Annals of Mathematics and Artificial Intelligence 32(1–4), 373–392 (2001)CrossRefGoogle Scholar
  17. 17.
    Coletti G., Scozzafava R.: Probabilistic Logic in a Coherent Setting. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  18. 18.
    Coletti G., Scozzafava R., Vantaggi B.: Inferential processes leading to possibility and necessity. Information Sciences 245, 132–145 (2013)CrossRefGoogle Scholar
  19. 19.
    de Finetti, B., La logique de la probabilité, in Actes du Congrès International de Philosophie Scientifique, Paris, 1935, Hermann et, Paris, 1936, pp. IV 1–IV 9.Google Scholar
  20. 20.
    de Finetti, B., Teoria delle probabilitá, 2 vols., Ed. Einaudi, Torino, 1970.Google Scholar
  21. 21.
    Dubois D., Prade H.: Conditional objects as nonmonotonic consequence relationships. IEEE Transactions on Systems, Man, and Cybernetics 24(12), 1724–1740 (1994)CrossRefGoogle Scholar
  22. 22.
    Edgington D.: On conditionals. Mind 104(414), 235–329 (1995)CrossRefGoogle Scholar
  23. 23.
    Edgington, D., Estimating conditional chances and evaluating counterfactuals, Studia Logica, this issue.Google Scholar
  24. 24.
    Fugard A. J. B., Pfeifer N., Mayerhofer B., Kleiter G. D.: How people interpret conditionals: Shifts toward the conditional event. Journal of Experimental Psychology: Learning, Memory, and Cognition 37(3), 635–648 (2011)Google Scholar
  25. 25.
    Gilio, A., Criterio di penalizzazione e condizioni di coerenza nella valutazione soggettiva della probabilità à, Bollettino della Unione Matematica Italiana 4B(3, Serie 7):645–660, 1990.Google Scholar
  26. 26.
    Gilio A.: Probabilistic reasoning under coherence in system P. Annals of Mathematics and Artificial Intelligence 34(1–3), 5–34 (2002)CrossRefGoogle Scholar
  27. 27.
    Gilio A.: Generalizing inference rules in a coherence-based probabilistic default reasoning. International Journal of Approximate Reasoning 53(3), 413–434 (2012)CrossRefGoogle Scholar
  28. 28.
    Gilio A., Over D.: The psychology of inferring conditionals from disjunctions: a probabilistic study. Journal of Mathematical Psychology 56(2), 118–131 (2012)CrossRefGoogle Scholar
  29. 29.
    Gilio A., Ingrassia S.: Totally coherent set-valued probability assessments. Kybernetika 34(1), 3–15 (1998)Google Scholar
  30. 30.
    Gilio, A., and G. Sanfilippo, Quasi Conjunction and p-entailment in nonmonotonic reasoning, in C. Borgelt et al., (eds.), Combining Soft Computing and Statistical Methods in Data Analysis, vol. 77 of AISC, Springer, Heidelberg, 2010, pp. 321–328.Google Scholar
  31. 31.
    Gilio, A., and G. Sanfilippo, Quasi conjunction and inclusion relation in probabilistic default reasoning, in W. Liu (ed.), ECSQARU 2011, vol. 6717 of LNCS, Springer, Heidelberg, 2011, pp. 497–508.Google Scholar
  32. 32.
    Gilio, A., and G. Sanfilippo, Conditional random quantities and iterated conditioning in the setting of coherence, in L. C. van der Gaag (ed.), ECSQARU 2013, vol. 7958 of LNCS, Springer, Heidelberg, 2013, pp. 218–229.Google Scholar
  33. 33.
    Gilio, A., and G. Sanfilippo, Conjunction, disjunction and iterated conditioning of conditional events, in Synergies of Soft Computing and Statistics for Intelligent Data Analysis, vol. 190 of AISC, Springer, Heidelberg, 2013, pp. 399–407.Google Scholar
  34. 34.
    Gilio A., Sanfilippo G.: Probabilistic entailment in the setting of coherence: The role of quasi conjunction and inclusion relation. International Journal of Approximate Reasoning 54(4), 513–525 (2013)CrossRefGoogle Scholar
  35. 35.
    Gilio A., Sanfilippo G.: Quasi conjunction, quasi disjunction, t-norms and t-conorms: probabilistic aspects. Information Sciences 245, 146–167 (2013)CrossRefGoogle Scholar
  36. 36.
    Gilio A., Scozzafava R.: Conditional events in probability assessment and revision. IEEE Transactions on Systems, Man, and Cybernetics 24(12), 1741–1746 (1994)CrossRefGoogle Scholar
  37. 37.
    Goodman I. R., Nguyen H. T., Walker E. A.: Conditional Inference and Logic for Intelligent Systems: A Theory of Measure-Free Conditioning. North-Holland, Amsterdam (1991)Google Scholar
  38. 38.
    Jeffrey R.: Matter-of-fact conditionals, Proceedings of the Aristotelian Society. Supplementary Volume 65, 161–183 (1991)Google Scholar
  39. 39.
    Kaufmann S. (2009) Conditionals right and left: probabilities for the whole family, Journal of Philosophical Logic 38:1–53Google Scholar
  40. 40.
    Lad, F., Coherent prevision as a linear functional without an underlying measure space: the purely arithmetic structure of conditional quantities, in G. Coletti et al. (eds.), Mathematical Models for Handling Partial Knowledge in Artificial Intelligence, Plenum Press, New York, 1995, pp. 101–112.Google Scholar
  41. 41.
    Lad F.: Operational Subjective Statistical Methods. Wiley, New York (1996)Google Scholar
  42. 42.
    Lad F., Sanfilippo G., Agró G.: Completing the logarithmic scoring rule for assessing probability distributions. AIP Conference Proceedings 1490(1), 13–30 (2012)CrossRefGoogle Scholar
  43. 43.
    Lewis D.: Probabilities of conditionals and conditional probabilities. Philosophical Review 85(3), 297–315 (1976)CrossRefGoogle Scholar
  44. 44.
    McGee V.: Conditional probabilities and compounds of conditionals. Philosophical Review 98(4), 485–541 (1989)CrossRefGoogle Scholar
  45. 45.
    Milne P.: Bruno de Finetti and the Logic of Conditional Events. British Journal for the Philosophy of Science 48(2), 195–232 (1997)CrossRefGoogle Scholar
  46. 46.
    Pedersen, A. P., An extension theorem and a numerical representation theorem for qualitative comparative expectations, Studia Logica, this issue.Google Scholar
  47. 47.
    Pfeifer, N., Reasoning about uncertain conditionals, Studia Logica, this issue.Google Scholar
  48. 48.
    Pfeifer N.: Experiments on aristotle’s thesis: Towards an experimental philosophy of conditionals. The Monist 95(2), 223–240 (2012)CrossRefGoogle Scholar
  49. 49.
    Pfeifer N., Kleiter G. D.: Inference in conditional probability logic. Kybernetika 42, 391–404 (2006)Google Scholar
  50. 50.
    Pfeifer N., Kleiter G.D.: Framing human inference by coherence based probability logic. Journal of Applied Logic 7(2), 206–217 (2009)CrossRefGoogle Scholar
  51. 51.
    Pfeifer, N., and G. D. Kleiter, The conditional in mental probability logic, in M. Oaksford, and N. Chater (eds.), Cognition and Conditionals: Probability and Logic in Human Thought, Oxford University Press, Oxford, 2010, pp. 153–173.Google Scholar
  52. 52.
    Schay G.: An algebra of conditional events. Journal of Mathematical Analysis and Applications 24, 334–344 (1968)CrossRefGoogle Scholar
  53. 53.
    Thorn, P. D., and G. Schurz, A Utility based evaluation of logico-probabilistic systems, Studia Logica, this issue.Google Scholar
  54. 54.
    Unterhuber, M., Possible Worlds Semantics for Indicative and Counterfactual Conditionals? A Formal-Philosophical Inquiry into Chellas-Segerberg Semantics, Ontos Verlag (Logos Series), Frankfurt, 2013.Google Scholar
  55. 55.
    Unterhuber, M., and G. Schurz, Completeness and Correspondence in Chellas-Segerberg Semantics, Studia Logica, this issue.Google Scholar
  56. 56.
    Wallmann, C., and G. D. Kleiter, Exchangeability in probability logic, in S. Greco et al. (eds.), Advances in Computational Intelligence, vol. 300 of CCIS, Springer-Verlag, Berlin, 2012, pp. 157–167.Google Scholar
  57. 57.
    Wallmann, C., and G. D. Kleiter, Probability Propagation in Generalized Inference Forms, Studia Logica, this issue.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.University of Rome “La Sapienza”RomeItaly
  2. 2.University of PalermoPalermoItaly

Personalised recommendations