Inclusion and Exclusion in Natural Language


We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicity reasoning, and moreover gives rise to an interesting logic of its own. We prove soundness of the resulting calculus and discuss further logical and linguistic issues, including a new connection to the classes of weak, strong, and superstrong negative polarity items.

This is a preview of subscription content, access via your institution.


  1. 1.

    Barwise J., Cooper R.: Generalized quantifiers and natural language. Linguistics and Philosophy 4, 159–219 (1981)

    Article  Google Scholar 

  2. 2.

    van Benthem J.: Essays in Logical Semantics. Reidel, Dordrecht (1986)

    Google Scholar 

  3. 3.

    van Benthem J.: Language in Action. North Holland, Amsterdam (1991)

    Google Scholar 

  4. 4.

    van Benthem, J., Natural logic: a view from the 1980’s, in M. K. Chakraborty et al. (eds.), Logic, Navya-Nyāya and Applications, College Publications, London, 2008.

  5. 5.

    Giannakidou, A., Negative and positive polarity items, in C. Maienborn, K. von Heusinger, and P. Portner (eds.), Semantics: An International Handbook of Natural Language Meaning, Mouton de Gruyter, 2011.

  6. 6.

    Hoeksema J.: Negative polarity and the comparative. Natural Language and Linguistic Theory 1, 403–434 (1983)

    Article  Google Scholar 

  7. 7.

    Ladusaw, W., Polarity Sensitivity as Inherent Scope Relations, Ph.D. Dissertation, University of Texas Austin, 1979.

  8. 8.

    MacCartney, B., Natural Language Inference, Ph.D. Dissertation, Stanford University, 2009.

  9. 9.

    MacCartney, B., and C. D. Manning, Modeling semantic containment and exclusion in natural language inference, The 22nd International Conference on Computational Linguistics (Coling-08), Manchester, 2008.

  10. 10.

    MacCartney, B., and C. D. Manning, An extended model of natural logic, Proceedings of the Eighth International Conference on Computational Semantics, 2009.

  11. 11.

    Moss, L. S., Logics for Natural Language Inference, ESSLLI 2010 Course Notes.

  12. 12.

    Moss, L. S., The Soundness of Internalized Polarity Marking, Studia Logica 100(4):683–704, 2012. (this issue)

    Google Scholar 

  13. 13.

    Sánchez, V., Studies on Natural Logic and Categorial Grammar, Ph.D. Dissertation, Universiteit van Amsterdam, 1991.

  14. 14.

    Suppes P.: Logical inference in English. Studia Logica 38(4), 375–391 (1979)

    Article  Google Scholar 

  15. 15.

    Zamansky A., Francez N., Winter Y.: A ’natural logic’ inference system using the Lambek Calculus. Journal of Logic, Language, and Information 15(3), 273–295 (2006)

    Article  Google Scholar 

  16. 16.

    Zwarts, F., Three types of polarity, in F. Hamm and E. Hinrichs (eds.), Plurality and Quantification, Kluwer, 1998.

Download references

Author information



Corresponding author

Correspondence to Thomas F. Icard III.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Icard, T.F. Inclusion and Exclusion in Natural Language. Stud Logica 100, 705–725 (2012).

Download citation


  • Surface reasoning
  • Logic and grammar
  • Exclusion relations
  • Polarity