Studia Logica

, Volume 101, Issue 5, pp 1061–1072 | Cite as

Three-valued Logics in Modal Logic

Open Access
Article

Abstract

Every truth-functional three-valued propositional logic can be conservatively translated into the modal logic S5. We prove this claim constructively in two steps. First, we define a Translation Manual that converts any propositional formula of any three-valued logic into a modal formula. Second, we show that for every S5-model there is an equivalent three-valued valuation and vice versa. In general, our Translation Manual gives rise to translations that are exponentially longer than their originals. This fact raises the question whether there are three-valued logics for which there is a shorter translation into S5. The answer is affirmative: we present an elegant linear translation of the Logic of Paradox and of Strong Three-valued Logic into S5.

Keywords

Three-valued logic Modal logic Conservative translations Expressivity 

References

  1. 1.
    Batens, D., On some remarkable relations between paraconsistent logics, modal logics, and ambiguity logics, in W. A. Carnielli, M. E. Coniglio, and I. M. L. D’Ottaviano (eds.), Paraconsistency. The Logical Way to the Inconsistent, Marcel Dekker, New York, 2002, pp. 275–293.Google Scholar
  2. 2.
    Brown B.: Yes, Virginia, there really are paraconsistent logics. Journal of Philosophical Logic 28, 489–500 (1999)CrossRefGoogle Scholar
  3. 3.
    Bush, D., Sequent formalizations of three-valued logic, in P. Doherty (ed.), Partiality, Modality and Nonmonotonicity, CSLI Publications, Stanford, 1996, pp. 45–75.Google Scholar
  4. 4.
    Cadoli M., Schaerf M.: On the complexity of entailment in propositional multivalued logics. Annals of Mathematics and Artificial Intelligence 18, 29–50 (1996)CrossRefGoogle Scholar
  5. 5.
    Chellas B.F.: Modal Logic. Cambridge University Press, Cambridge (1980)Google Scholar
  6. 6.
    Cobreros P., Egré P., Ripley D., van Rooij R.: Tolerant, classical, strict. Journal of Philosophical Logic 41, 347–385 (2012)CrossRefGoogle Scholar
  7. 7.
    D’Ottaviano, I. M. L., and H. A. Feitosa, On Gödel’s modal interpretation of the intuitionistic logic, in J.-Y. Béziau (ed.), Universal Logic: An Anthology, Birkhäuser, Basel, 2012, pp. 71–88.Google Scholar
  8. 8.
    Feitosa H.A., D’Ottaviano I.M.L.: Conservative translations. Annals of Pure and Applied Logic 108, 205–227 (2001)CrossRefGoogle Scholar
  9. 9.
    Gödel, K., Eine Interpretation des intuitionistischen Aussagenkalküls, Ergebnisse eines mathematischen Kolloquiums 4:39–40, 1933. Reprinted in K. Gödel, Collected Works, Volume 1, Clarendon Press, Oxford, 1986, pp. 300–302.Google Scholar
  10. 10.
    Kleene S.C.: On notation for ordinal numbers. Journal of Symbolic Logic 3, 150–155 (1938)CrossRefGoogle Scholar
  11. 11.
    Kleene, S. C., Introduction to Metamathematics, P. Noordhoff N.V., Groningen, 1952.Google Scholar
  12. 12.
    Ladner R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing 6, 467–480 (1977)CrossRefGoogle Scholar
  13. 13.
    Lewis, D., Logic for equivocators, Noûs 16:431–441, 1982. Reprinted with corrections in D. Lewis, Papers in Philosophical Logic, Cambridge University Press, Cambridge, 1998, pp. 97–110.Google Scholar
  14. 14.
    Priest G.: The logic of paradox. Journal of Philosophical Logic 8, 219–241 (1979)CrossRefGoogle Scholar
  15. 15.
    Priest G.: Boolean negation and all that. Journal of Philosophical Logic 19, 201–215 (1990)CrossRefGoogle Scholar
  16. 16.
    van Benthem J.: Partiality and nonmonotonicity in classical logic. Logique et Analyse 29, 225–247 (1986)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Faculty of PhilosophyUniversity of GroningenGroningenThe Netherlands
  2. 2.Institute of PhilosophyUniversity of OldenburgOldenburgGermany

Personalised recommendations