Studia Logica

, Volume 100, Issue 1–2, pp 163–173

Fatal Heyting Algebras and Forcing Persistent Sentences

Open Access
Article

Abstract

Hamkins and Löwe proved that the modal logic of forcing is S4.2. In this paper, we consider its modal companion, the intermediate logic KC and relate it to the fatal Heyting algebra HZFC of forcing persistent sentences. This Heyting algebra is equationally generic for the class of fatal Heyting algebras. Motivated by these results, we further analyse the class of fatal Heyting algebras.

Keywords

forcing intermediate logics Heyting algebra 

References

  1. 1.
    Adámek J., Rosický J., Vitale E. M.: Algebraic theories. A categorical introduction to general algebra, vol. 184 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2011)Google Scholar
  2. 2.
    Bezhanishvili G.: ‘The universal modality, the center of a Heyting algebra, and the Blok-Esakia theorem’. Annals of Pure and Applied Logic 161(3), 253–267 (2009)CrossRefGoogle Scholar
  3. 3.
    Chagrov, A., and M. Zakharyaschev, Modal logic, vol. 35 of Oxford Logic Guides, Oxford University Press, 1997.Google Scholar
  4. 4.
    Dummett M., Lemmon E.: ‘Modal logics between S4 and S5’. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 3, 250–264 (1959)CrossRefGoogle Scholar
  5. 5.
    Gödel K.: ‘Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes’. Dialectica 12, 280–287 (1958)CrossRefGoogle Scholar
  6. 6.
    Hamkins J. D., Löwe B.: ‘The modal logic of forcing’. Transactions of the American Mathematical Society 360, 1793–1817 (2008)CrossRefGoogle Scholar
  7. 7.
    Johnstone P. T.: Stone spaces, vol. 3 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1982)Google Scholar
  8. 8.
    Kiss E.W., Márki L., Prőhle P., Tholen W.: ‘Categorical algebraic properties.A compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity’. Studia Scientiarum Mathematicarum Hungarica 18(1), 79–140 (1982)Google Scholar
  9. 9.
    Löwe B., Sarenac D.: ‘Cardinal spaces and topological representations of bimodal logics’. Logic Journal of the IGPL 13, 301–306 (2005)CrossRefGoogle Scholar
  10. 10.
    Maksimova L. L.: ‘Craig’s theorem in superintuitionistic logics and amalgamable varieties’. Algebra and Logic 16(6), 427–455 (1977)CrossRefGoogle Scholar
  11. 11.
    McKinsey J. Ch. Ch., Tarski A.: ‘Some theorems about the sentential calculi of Lewis and Heyting’. Journal of Symbolic Logic13, 1–15 (1948)Google Scholar
  12. 12.
    Rasiowa, H., and R. Sikorski, The Mathematics of Metamathematics, vol. 41 of Monografie Matematyczne, Państwowe Wydawnictwo Naukowe, Warsaw, 1963.Google Scholar
  13. 13.
    Tarski A.: ‘A remark on functionally free algebras’. Annals of Mathematics 47, 163–165 (1946)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute for Logic, Language and ComputationUniversiteit van AmsterdamAmsterdamThe Netherlands
  2. 2.Fachbereich MathematikUniversität HamburgHamburgGermany

Personalised recommendations