Studia Logica

, 99:31 | Cite as

Ideal Paraconsistent Logics

  • O. Arieli
  • A. AvronEmail author
  • A. Zamansky


We define in precise terms the basic properties that an ‘ideal propositional paraconsistent logic’ is expected to have, and investigate the relations between them. This leads to a precise characterization of ideal propositional paraconsistent logics. We show that every three-valued paraconsistent logic which is contained in classical logic, and has a proper implication connective, is ideal. Then we show that for every n > 2 there exists an extensive family of ideal n-valued logics, each one of which is not equivalent to any k-valued logic with k < n.


Paraconsistent logics ideal paraconsistency many-valued logics 


  1. 1.
    Anderson, A., and N. Belnap, Entailment, vol. 1, Princeton University Press, 1975.Google Scholar
  2. 2.
    Arieli O., Avron A.: ‘The value of the four values’. Artificial Intelligence 102(1), 97–141 (1998)CrossRefGoogle Scholar
  3. 3.
    Arieli O., Avron A., Zamansky A.: ‘Maximal and premaximal paraconsistency in the framework of three-valued semantics’. Studia Logica 97(1), 31–60 (2011)CrossRefGoogle Scholar
  4. 4.
    Arieli, O., A. Avron, and A. Zamansky, ‘What is an ideal logic for reasoning with inconsistency?’, in Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI’11), AAAI Press, 2011, pp. 706–711.Google Scholar
  5. 5.
    Avron A.: ‘Natural 3-valued logics: Characterization and proof theory’. Journal of Symbolic Logic 56(1), 276–294 (1991)CrossRefGoogle Scholar
  6. 6.
    Avron, A., O. Arieli, and A. Zamansky, ‘On strong maximality of paraconsistent finite-valued logics’, in Proceedings of the 25th Ann. Symp. on Logic in Computer Science (LICS’10), IEEE Press, 2010, pp. 304–313.Google Scholar
  7. 7.
    Avron A., Lev I.: ‘Non-deterministic multi-valued structures’. Journal of Logic and Computation 15, 241–261 (2005)CrossRefGoogle Scholar
  8. 8.
    Avron, A., and A. Zamansky, ‘Non-deterministic semantics for logical systems – A survey’, in D. Gabbay, and F. Guenthner, (eds.), Handbook of Philosophical Logic, Kluwer, 2011. To appear.Google Scholar
  9. 9.
    Batens D.: ‘Paraconsistent extensional propositional logics’. Logique et Analyse 90-91, 195–234 (1980)Google Scholar
  10. 10.
    Batens, D., C. Mortensen, G. Priest, and J. Van Bendegem, Frontiers of Paraconsistent Logic, Proceedings of the First World Congress on Paraconsistency, vol. 8 of Studies in Logic and Computation, Research Studies Press, 2000.Google Scholar
  11. 11.
    Belnap, N., ‘How a computer should think’, in G. Ryle, (ed.), Contemporary Aspects of Philosophy, Oriel Press, 1977, pp. 30–56.Google Scholar
  12. 12.
    Belnap, N., ‘A useful four-valued logic’, in J. M. Dunn, and G. Epstein, (eds.), Modern Uses of Multiple-Valued Logics, Reidel Publishing Company, 1977, pp. 7–37.Google Scholar
  13. 13.
    Béziau, J. Y., W. Carnielli, and D. Gabbay, Handbook of Paraconsistency, 2007.Google Scholar
  14. 14.
    Bremer, M., An Introduction to Paraconsistent Logics, Peter Lang, 2005.Google Scholar
  15. 15.
    Carnielli, W., M. Coniglio, and I. D’Ottaviano, Paraconsistency: The Logical Way to the Inconsistent – Proceedings of the Second World Congress on Paraconsistency, Marcel Dekker, 2001.Google Scholar
  16. 16.
    Carnielli, W., M. Coniglio, and J. Marcos, ‘Logics of formal inconsistency’, in D. Gabbay, and F. Guenthner, (eds.), Handbook of Philosophical Logic, vol. 14, Springer, 2007, pp. 1–93. Second edition.Google Scholar
  17. 17.
    Carnielli W., Marcos J., de Amo S.: ‘Formal inconsistency and evolutionary databases’. Logic and Logical Philosophy 8, 115–152 (2000)Google Scholar
  18. 18.
    da Costa N.: ‘On the theory of inconsistent formal systems’. Notre Dame Journal of Formal Logic 15, 497–510 (1974)CrossRefGoogle Scholar
  19. 19.
    D’Ottaviano I.: ‘The completeness and compactness of a three-valued first-order logic’. Revista Colombiana de Matematicas XIX(1-2), 31–42 (1985)Google Scholar
  20. 20.
    Dunn J.M.: ‘Intuitive semantics for first-degree entailments and coupled trees’. Philosophical Studies 29, 149–168 (1976)CrossRefGoogle Scholar
  21. 21.
    Fitting M.: ‘Bilattices and the semantics of logic programming’. Journal of Logic Programming 11(2), 91–116 (1991)CrossRefGoogle Scholar
  22. 22.
    Fitting M.: ‘Kleene’s three valued logics and their children’. Fundamenta Informaticae 20(1-3), 113–131 (1994)Google Scholar
  23. 23.
    Ginsberg M.: ‘Multi-valued logics: A uniform approach to reasoning in AI’. Computer Intelligence 4, 256–316 (1988)Google Scholar
  24. 24.
    Gottwald, S., ‘A treatise on many-valued logics’, in Studies in Logic and Computation, vol. 9, Research Studies Press, Baldock, 2001.Google Scholar
  25. 25.
    Jaśkowski, S., ‘On the discussive conjunction in the propositional calculus for inconsistent deductive systems’, Logic, Language and Philosophy 7:57–59, 1999. Translation of the original paper from 1949.Google Scholar
  26. 26.
    Karpenko, A., ‘A maximal paraconsistent logic: The combination of two threevalued isomorphs of classical propositional logic’, [10], pp. 181–187.Google Scholar
  27. 27.
    Kleene, S. C., Introduction to Metamathematics, Van Nostrand, 1950.Google Scholar
  28. 28.
    Malinowski, G., Many-Valued Logics, Clarendon Press, 1993.Google Scholar
  29. 29.
    Marcos, J., ‘8K solutions and semi-solutions to a problem of da Costa’, Submitted.Google Scholar
  30. 30.
    Marcos, J., ‘On a problem of da Costa’, in G Sica, (ed.), Essays on the Foundations of Mathematics and Logic, vol. 2, Polimetrica, 2005, pp. 39–55.Google Scholar
  31. 31.
    Priest G.: ‘Logic of paradox’. Journal of Philosophical Logic 8, 219–241 (1979)CrossRefGoogle Scholar
  32. 32.
    Priest G.: ‘Reasoning about truth’. Artificial Intelligence 39, 231–244 (1989)CrossRefGoogle Scholar
  33. 33.
    Sette A.M.: ‘On propositional calculus P 1’. Mathematica Japonica 16, 173–180 (1973)Google Scholar
  34. 34.
    Shoesmith D.J., Smiley T.J.: ‘Deducibility and many-valuedness’. Journal of Symbolic Logic 36, 610–622 (1971)CrossRefGoogle Scholar
  35. 35.
    Shoesmith, D. J., and T. J. Smiley, Multiple Conclusion Logic, Cambridge University Press, 1978.Google Scholar
  36. 36.
    Urquhart, A., ‘Many-valued logic’, in D. Gabbay, and F. Guenthner, (eds.), Handbook of Philosophical Logic, vol. II, Kluwer, 2001, pp. 249–295. Second edition.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Computer ScienceThe Academic College of Tel-AvivTel-AvivIsrael
  2. 2.School of Computer ScienceTel-Aviv UniversityTel-AvivIsrael
  3. 3.Institute for Discrete Mathematics and GeometryVienna Technical UniversityViennaAustria

Personalised recommendations