Abstract
PG (Plural Grundgesetze) is a predicative monadic second-order system which is aimed to derive second-order Peano arithmetic. It exploits the notion of plural quantification and a few Fregean devices, among which the infamous Basic Law V. In this paper, a model-theoretical consistency proof for the system PG is provided.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Ben-Yami, H., Logic & Natural Language, Ashgate, Aldershot, Burlington, 2004.
Boccuni F.: ‘Plural Grundgesetze’. Studia Logica 96(2), 315–330 (2010)
Boolos G.: ‘Nominalist Platonism’. Philosophical Review 94, 327–344 (1985)
Burgess, J.P., Fixing Frege, Princeton, Princeton University Press, 2005.
Carrara M., Martino E.: ‘To be is to be the Object of a Possible Act of Choice’. Studia Logica 96(2), 289–313 (2010)
Dummett M.: Frege: Philosophy of Mathematics. Duckworth, London (1991)
Ferreira F., Wehmeier K.F.: ‘On the Consistency of the \({\Delta^1_1}\)-CA Fragment of rege’s Grundgesetze’. Journal of Philosophical Logic 31, 301–311 (2002)
Heck R.: ‘The Consistency of Predicative Fragments of Frege’s Grundgesetze der Arithmetik’. History and Philosophy of Logic 17, 209–220 (1996)
Linnebo Ø.: ‘Predicative Fragments of Frege Arithmetic’. The Bulletin of Symbolic Logic 10(2), 153–174 (2004)
Linnebo Ø.: ‘Bad Company Tamed’. Synthese 170(3), 371–391 (2007)
Linnebo Ø.: ‘Pluralities and Sets’. Journal of Philosophy 107(3), 144–164 (2010)
Martino E.: ‘Arbitrary Reference in Mathematical Reasoning’. Topoi 20, 65–77 (2001)
Wehmeier K.F.: ‘Consistent Fragments of Grundgesetze and the Existence of Non- Logical Objects’. Synthese 121, 309–328 (1999)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Boccuni, F. On the Consistency of a Plural Theory of Frege’s Grundgesetze . Stud Logica 97, 329–345 (2011). https://doi.org/10.1007/s11225-011-9311-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-011-9311-9