Studia Logica

, Volume 96, Issue 3, pp 375–391 | Cite as

Theories of Truth without Standard Models and Yablo’s Sequences

Article

Abstract

The aim of this paper is to show that it’s not a good idea to have a theory of truth that is consistent but ω-inconsistent. In order to bring out this point, it is useful to consider a particular case: Yablo’s Paradox. In theories of truth without standard models, the introduction of the truth-predicate to a first order theory does not maintain the standard ontology. Firstly, I exhibit some conceptual problems that follow from so introducing it. Secondly, I show that in second order theories with standard semantics the same procedure yields a theory that doesn’t have models. So, while having an ω- inconsistent theory is a bad thing, having an unsatisfiable theory of truth is actually worse. This casts doubts on whether the predicate in question is, after all, a truthpredicate for that language. Finally, I present some alternatives to prove an inconsistency adding plausible principles to certain theories of truth.

Keywords

Yablo’s Paradox non-standard models ω-inconsistency theories of truth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beall J.C.: ‘Is Yablo’s Paradox Non-Circular’. Analysis 61, 176–187 (2001)CrossRefGoogle Scholar
  2. 2.
    Bueno O., Colyvan M.: ‘Paradox without Satisfaction’. Analysis 63, 152–156 (2003)CrossRefGoogle Scholar
  3. 3.
    Feferman S.: ‘Reflecting on Incompleteness’. Journal of Symbolic Logic 56(1), 1–49 (1991)CrossRefGoogle Scholar
  4. 4.
    Forster, Th., ‘The Significance of Yablo’s Paradox without Self-Reference’, 1996. Available at URL = <http://www.dpmms.cam.ac.uk/-tf>.
  5. 5.
    Hablach V.: ‘A System of Complete and Consistent Truth’. Notre Dame Journal of Formal Logic 35, 353–370 (1994)Google Scholar
  6. 6.
    Hablach V.: ‘Conservative Theories of Classical Truth’. Studia Logica 62, 353–370 (1999)CrossRefGoogle Scholar
  7. 7.
    Halbach V., Horsten L.: ‘The Deflationist’s Axioms for Truth’. In: Beall, J.C., Armour-Garb, B. (eds) Deflationism and Paradox, pp. 203–217. Oxford University Press, Oxford (2005)Google Scholar
  8. 8.
    Halbach, V., ‘Axiomatic Theories of Truth’, in E.N. Zalta, (ed.), Stanford Encyclopedia of Philosophy, available at URL = <http://plato.stanford.edu/entries/truth-axiomatic>, 2007.
  9. 9.
    Kaye R.: Models of Peano Arithmetic. Oxford University Press, Oxford (1991)Google Scholar
  10. 10.
    Ketland J.: ‘Deflationism and Tarski’s Paradise’. Mind 108(429), 69–94 (1999)CrossRefGoogle Scholar
  11. 11.
    Ketland J.: ‘Yablo’s Paradox and ω-inconsistency’. Synthese 145, 295–302 (2005)CrossRefGoogle Scholar
  12. 12.
    Leitgeb H.: ‘Theories of Truth which have no Standard Models’. Studia Logica 68, 69–87 (2001)CrossRefGoogle Scholar
  13. 13.
    Leitgeb H.: ‘What is a Self-Referential Sentence? Critical Remarks on the Alleged (Non-)Circularity of Yablo’s Paradox’. Logique et Analyse 177-178, 3–14 (2002)Google Scholar
  14. 14.
    McGee V.: ‘How Truthlike Can a Predicate Be? A Negative Result’. Journal of Philosophical Logic 14, 399–410 (1985)CrossRefGoogle Scholar
  15. 15.
    McGee V.: ‘How We Learn Mathematical Language’. Philosophical Review 106, 35–68 (1997)CrossRefGoogle Scholar
  16. 16.
    Priest G.: ‘Yablo’s Paradox’. Analysis 57(4), 236–242 (1997)CrossRefGoogle Scholar
  17. 17.
    Shapiro S.: Foundations without Foundationalism: A case for Second-Order Logic. Oxford Clarendon Press, Oxford (1991)Google Scholar
  18. 18.
    Sheard M.: ‘Weak and Strong Theories of Truth’. Studia Logica 68, 89–101 (2001)CrossRefGoogle Scholar
  19. 19.
    Simpson S.: Subsystems of Second Order Peano Arithmetic. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  20. 20.
    Sorensen R.: ‘Yablo’s Paradox and Kindred Infinite Liars’. Mind 107, 137–155 (1998)CrossRefGoogle Scholar
  21. 21.
    Uzquiano, G., ‘An Infinitary Paradox of Denotation’, Analysis, 64 (2004), 138–131.Google Scholar
  22. 22.
    Visser A.: ‘Semnatics and the liar paradox’. In: Gabbay, D., Guenther, F. (eds) Handbook of Philosophical Logic, pp. 149–204. Kluwer, Dordretch (2004)Google Scholar
  23. 23.
    Yablo S.: ‘Paradox without Self-Reference’. Analysis 53, 251–252 (1993)CrossRefGoogle Scholar
  24. 24.
    Yablo S.: ‘A Reply to New Zeno’. Analysis 60, 148–151 (2000)CrossRefGoogle Scholar
  25. 25.
    Yablo S.: ‘Circularity and Paradox’. In: Hendricks, V., Pedersen, S., Bolander, T. (eds) Self-reference, pp. 139–157. CSLI Press, Stanford (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations