Studia Logica

, 92:147 | Cite as

A Temporal Semantics for Basic Logic

  • Stefano Aguzzoli
  • Matteo Bianchi
  • Vincenzo Marra


In the context of truth-functional propositional many-valued logics, Hájek’s Basic Fuzzy Logic BL [14] plays a major rôle. The completeness theorem proved in [7] shows that BL is the logic of all continuous t-norms and their residua. This result, however, does not directly yield any meaningful interpretation of the truth values in BL per se. In an attempt to address this issue, in this paper we introduce a complete temporal semantics for BL. Specifically, we show that BL formulas can be interpreted as modal formulas over a flow of time, where the logic of each instant is Łukasiewicz, with a finite or infinite number of truth values. As a main result, we obtain validity with respect to all flows of times that are non-branching to the future, and completeness with respect to all finite linear flows of time, or to an appropriate single infinite linear flow of time. It may be argued that this reduces the problem of establishing a meaningful interpretation of the truth values in BL logic to the analogous problem for Łukasiewicz logic.


Many-valued logics Basic Logic Łukasiewicz logic Modal logics Temporal logics 


  1. 1.
    Aglianò P., Ferreirim I.M.A., Montagna F.: ‘Basic Hoops: an Algebraic Study of Continuous t-norms’. Studia Logica 87(1), 73–98 (2007). doi: 10.1007/s11225-007-9078-1 CrossRefGoogle Scholar
  2. 2.
    Aguzzoli, S., B. Gerla, and V. Marra, ‘Embedding Gödel propositional logic into Prior’s tense logic’, in L. Magdalena, M. Ojeda-Aciego, and J.L. Verdegay, (eds.), Proceedings of IPMU’08, Torremolinos (Málaga), 2008, pp. 992–999.
  3. 3.
    Borkowski, L., (ed.) Jan Łukasiewicz Selected Works, Studies In Logic and The Foundations of Mathematics, North Holland Publishing Company-Amsterdam, Polish Scientific Publishers-Warszawa, 1970. ISBN:720422523.Google Scholar
  4. 4.
    Burris, S., and H. P. Sankappanavar, A course in universal algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1981. An updated and revised electronic edition is available on
  5. 5.
    Cicalese, F., and D. Mundici, Recent Developments of Feedback Coding and its Relations with Many-Valued Logic, vol. 1, Allied Publishers, 2007, pp. 222–240. ISBN:9798184242729.Google Scholar
  6. 6.
    Cignoli, R., I. D’Ottaviano, and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, vol. 7 of Trends in Logic, Kluwer Academic Publishers, 1999. ISBN:9780792360094.Google Scholar
  7. 7.
    Cignoli R., Esteva F., Godo L., Torrens A.: ‘Basic fuzzy logic is the logic of continuous t-norms and their residua’. Soft Computing - A Fusion of Foundations, Methodologies and Applications 4(2), 105–112 (2000). doi: 10.1007/s005000000044 Google Scholar
  8. 8.
    Darnel, M.R., Theory of lattice-ordered groups, vol. 187 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York, 1995. ISBN:9780824793265.Google Scholar
  9. 9.
    Di Nola A., Esteva F., Godo L., Montagna F.: ‘Varieties of BL-algebras’. Soft Computing - A Fusion of Foundations, Methodologies and Applications 9(12), 875–888 (2005). doi: 10.1007/s00500-004-0446-8 Google Scholar
  10. 10.
    Dummett, M., ‘A propositional calculus with denumerable matrix’, The Journal of Symbolic Logic, 24 (1959), 2, 97–106.
  11. 11.
    Fermüller C.: ‘Dialogue Games for Many-Valued Logics an Overview’. Studia Logica 90(1), 43–68 (2008). doi: 10.1007/s11225-008-9143-4 CrossRefGoogle Scholar
  12. 12.
    Giles, R., ‘Łukasiewicz logic and fuzzy set theory’, in Proceedings of the 1975 International Symposium on Multiple-Valued Logic (Indiana Univ., Bloomington, Ind., 1975), IEEE Comput. Soc., Long Beach, Calif., 1975, pp. 197–211.Google Scholar
  13. 13.
    Gottwald, S., A treatise on many-valued logics, no. 9 in Studies in Logic and Computation, Research Studies Press Ltd., Baldock, 2001. ISBN:0863802621.Google Scholar
  14. 14.
    H´ajek, P., Metamathematics of Fuzzy Logic, vol. 4 of Trends in Logic, paperback edn., Kluwer Academic Publishers, 2002. ISBN:9781402003707.Google Scholar
  15. 15.
    Montagna F.: ‘Generating the variety of BL-algebras’. Soft Computing - A Fusion of Foundations, Methodologies and Applications 9(12), 869–874 (2005). doi: 10.1007/s00500-004-0450-z Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Stefano Aguzzoli
    • 1
  • Matteo Bianchi
    • 2
  • Vincenzo Marra
    • 3
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItaly
  2. 2.Dipartimento di Matematica “Federigo Enriques”Università degli Studi di MilanoMilanoItaly
  3. 3.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations