Skip to main content
Log in

Constructive Logic with Strong Negation is a Substructural Logic. II

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFL ew of the substructural logic FL ew . The main result of Part I of this series [41] shows that the equivalent variety semantics of N (namely, the variety of Nelson algebras) and the equivalent variety semantics of NFL ew (namely, a certain variety of FL ew -algebras) are term equivalent. In this paper, the term equivalence result of Part I [41] is lifted to the setting of deductive systems to establish the definitional equivalence of the logics N and NFL ew . It follows from the definitional equivalence of these systems that constructive logic with strong negation is a substructural logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aglianò P. (2001) ‘Fregean subtractive varieties with definable congruences’. Journal of the Australian Mathematical Society, Series A 71: 353–366

    Article  Google Scholar 

  2. Balbes R., Dwinger P. (1974) Distributive Lattices. University of Missouri Press, Columbia

    Google Scholar 

  3. Blok, W.J., and D. Pigozzi, ‘Algebraizable logics’, Memoirs of the American Mathematical Society 77 (1989), no. 396.

  4. Blok W.J., Pigozzi D (1992) ‘Algebraic semantics for universal Horn logic without equality’. In: Romanowska A., Smith J.D.H. (eds) Universal Algebra and Quasigroup Theory. Heldermann Verlag, Berlin, pp 1–56

    Google Scholar 

  5. Blok W.J., Pigozzi D. (1994) ‘On the structure of varieties with equationally definable principal congruences III’. Algebra Universalis 32: 545–608

    Article  Google Scholar 

  6. Blok, W.J., and D. Pigozzi, ‘Abstract Algebraic Logic and the Deduction Theorem’, Manuscript, 2001.

  7. Blok W.J., Raftery J.G. (2008) ‘Assertionally equivalent quasivarieties’. International Journal of Algebra and Computation 18: 589–681

    Article  Google Scholar 

  8. Blount K., Tsinakis C. (2003) ‘The structure of residuated lattices’. International Journal of Algebra and Computation 13: 437–461

    Article  Google Scholar 

  9. Bou, F., F. Esteva, J.M. Font, A. Gil, L. Godo, A. Torrens, and V. Verdú, ‘Logics preserving degrees of truth from varieties of residuated lattices’, Submitted, 2008.

  10. Brignole D. (1969) ‘Equational characterisation of Nelson algebra’. Notre Dame Journal of Formal Logic 10: 285–297

    Article  Google Scholar 

  11. Busaniche, M., and R. Cignoli, ‘Constructive logic with strong negation as a substructural logic’, Submitted, 2007.

  12. Caleiro C., Gonçalves R. (2005) ‘Equipollent logical systems’. In: Beziau J.-Y. (eds) Logica Universalis: Towards a General Theory of Logic. Birkhäuser Verlag, Basel, pp 99–111

    Google Scholar 

  13. Cignoli R. (1986) ‘The class of Kleene algebras satisfying an interpolation property and Nelson algebras’. Algebra Universalis 23: 262–292

    Article  Google Scholar 

  14. Czelakowski J. (2001) Protoalgebraic Logics, Trends in Logic: Studia Logica Library, vol.10. Kluwer Academic Publishers, Amsterdam

    Google Scholar 

  15. Czelakowski J., Pigozzi D. (2004) ‘Fregean logics’. Annals of Pure and Applied Logic 127: 17–76

    Article  Google Scholar 

  16. Font J.M. (1993) ‘On the Leibniz congruences’. In: Rauszer C. (eds) Algebraic Methods in Logic and Computer Science, Banach Centre Publications, vol. 28. Polish Academy of Sciences, Warszawa, pp 17–36

    Google Scholar 

  17. Font J.M., Jansana R. (1996) A general algebraic semantics for sentential logics, Lecture Notes in Logic, no. 7. Springer-Verlag, Berlin

    Google Scholar 

  18. Galatos N., Ono H. (2006) ‘Algebraization, parameterized local deduction theorem and interpolation for substructural logics over FL’. Studia Logica 83: 279–308

    Article  Google Scholar 

  19. Galatos, N., P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An algebraic Glimpse at Substructural Logics, Elsevier, 2007.

  20. Girard J.-Y. (1987) ‘Linear Logic’. Theoretical Computer Science 50: 1–102

    Article  Google Scholar 

  21. Gyuris, V., ‘Variations of Algebraizability’, Ph.D. thesis, The University of Illinois at Chicago, 1999.

  22. Idziak, P.M., K. Słomczyńska, and A. Wroński, ‘Equivalential algebras: A study of Fregean varieties’, Preprint, 2004.

  23. Kowalski, T., and H. Ono, ‘Residuated Lattices: An Algebraic Glimpse at Logics without Contraction’, Manuscript, 2000.

  24. Łukasiewicz, J., and A. Tarski, ‘Investigations into the sentential calculus’, in Logic, Semantics and Metamathematics, 1st. Ed., Clarendon Press, Oxford, 1956, pp. 38–59.

  25. McCune, W., and R. Padmanabhan, Automated Deduction in Equational Logic and Cubic Curves, Lecture Notes in Computer Science (AI subseries), Springer-Verlag, Berlin, 1996.

  26. McCune, W., Prover 9,http://www.cs.unm.edu/~mccune/prover9, 2007.

  27. Olson, J.S., Finiteness Conditions on Varieties of Residuated Structures, Ph.D. thesis, University of Illinois at Chicago, 2006.

  28. Ono H., Komori Y. (1985) ‘Logics without the contraction rule’. Journal of Symbolic Logic 50: 169–201

    Article  Google Scholar 

  29. Ono, H., ‘Logics without contraction rule and residuated lattices I’, To appear in Festschrift of Prof. R. K. Meyer.

  30. Ono, H., ‘Substructural logics and residuated lattices—an introduction’, in Trends in Logic: 50 Years of Studia Logica, Kluwer Academic Publishers, Dordrecht, 2003, pp. 193–228.

  31. Pigozzi D. (1991) ‘Fregean algebraic logic’. In: Monk J.D., Andréka H., Nemeti I. (eds) Algebraic Logic, Colloquia Mathematica Societas János Bolyai, no 54. Amsterdam, North-Holland, pp 473–502

    Google Scholar 

  32. Pynko A.P. (1999) ‘Definitional equivalence and algebraizability of generalised logical systems’. Annals of Pure and Applied Logic 98: 1–68

    Article  Google Scholar 

  33. Raftery J., van Alten C.J. (1997) ‘On the algebra of noncommutative residuation: Polrims and left residuation algebras’. Mathematica Japonica 46: 29–46

    Google Scholar 

  34. Rasiowa, H., An Algebraic Approach to Non-Classical Logics, Studies in Logic and the Foundations of Mathematics, no. 78, North-Holland Publishing Company, Amsterdam, 1974.

  35. Restall G. (2000) An Introduction to Substructural Logics. Routledge, London

    Google Scholar 

  36. Schroeder-Heister, P., and K. Došen, (eds.), Substructural Logics, Studies in Logic and Computation, vol. 2, Oxford University Press, 1993.

  37. Sendlewski A. (1984) ‘Some investigations of varieties of N-lattices’. Studia Logica 43: 257–280

    Article  Google Scholar 

  38. Spinks M. (2004) ‘Ternary and quaternary deductive terms for Nelson algebras’. Algebra Universalis 51: 125–136

    Article  Google Scholar 

  39. Spinks, M., R.J. Bignall, and R. Veroff, Pointed discriminator logics, In preparation, 2008.

  40. Spinks, M., and R. Veroff, Constructive logic with strong negation is a substructural logic, I and II: Web support. http://www.cs.unm.edu/~veroff/CLSN, 2008.

  41. Spinks M., Veroff R. (2008) ‘Constructive logic with strong negation is a substructural logic. I’. Studia Logica 88: 325–348

    Article  Google Scholar 

  42. Vakarelov D. (1977) ‘Notes on \({\mathcal{N}}\) -lattices and constructive logic with strong negation’. Studia Logica 36: 109–125

    Article  Google Scholar 

  43. Vakarelov D. (2005) ‘Nelson’s negation on the base of weaker versions of intuitionistic negation’. Studia Logica 80: 393–430

    Article  Google Scholar 

  44. van Alten, C. J., ‘Algebraizing Deductive Systems’, M. Sc. thesis, University of Natal, Pietermaritzburg, 1995.

  45. van Alten C.J., Raftery J.G. (2004) ‘Rule separation and embedding theorems for logics without weakening’. Studia Logica 76: 241–274

    Article  Google Scholar 

  46. Veroff R. (2001) ‘Solving open questions and other challenge problems using proof sketches’. Journal of Automated Reasoning 27: 157–174

    Article  Google Scholar 

  47. Wójcicki, R., Theory of Logical Calculi, Synthese Library, no. 199, Kluwer Academic Publishers, Dordrecht, 1988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Spinks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spinks, M., Veroff, R. Constructive Logic with Strong Negation is a Substructural Logic. II. Stud Logica 89, 401–425 (2008). https://doi.org/10.1007/s11225-008-9138-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-008-9138-1

Keywords

Navigation