Advertisement

Studia Logica

, Volume 84, Issue 1, pp 23–50 | Cite as

Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part II: Category Theoretic Approaches

  • Siegfried GottwaldEmail author
Article

Abstract

For classical sets one has with the cumulative hierarchy of sets, with axiomatizations like the system ZF, and with the category SET of all sets and mappings standard approaches toward global universes of all sets.

We discuss here the corresponding situation for fuzzy set theory. Our emphasis will be on various approaches toward (more or less naively formed) universes of fuzzy sets as well as on axiomatizations, and on categories of fuzzy sets.

What we give is a (critical) survey of quite a lot of such approaches which have been offered in the last approximately 35 years.

Part I was devoted to model based and to axiomatic approaches; the present Part II is devoted to category theoretic approaches.

Keywords

fuzzy sets higher level fuzzy sets set theoretic universes axiomatic set theories categories of fuzzy sets M-valued sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barr, M., and C. Wells, Toposes, Triples and Theories, Grundl. Math. Wiss. 278. Springer-Verlag, New York, 1985.Google Scholar
  2. [2]
    Bell, J. L., ‘Some aspects of the category of subobjects of constant objects in a topos’, J. Pure Appl. Algebra 24:245–259, 1982.CrossRefGoogle Scholar
  3. [3]
    Bell, J. L., Toposes and Local Set Theories, Oxford Logic Guides 14. Oxford UniversityPress (Clarendon Press), Oxford, 1988.Google Scholar
  4. [4]
    Borceux, F., Handbook of Categorical Algebra, Encycl. Math. and its Appl., vols. 50–52, Cambridge Univ. Press, Cambridge, 1994.Google Scholar
  5. [5]
    Carrega, J. C., ‘The categories Set-H and Fuz-H’, Fuzzy Sets Syst. 9:327–332, 1983.CrossRefGoogle Scholar
  6. [6]
    Cerruti, U., and U. Höhle, ‘Categorical foundations of fuzzy set theory with applications to algebra and topology’, in A. di Nola and A. G. S. Ventre, (eds.), The Mathematics of Fuzzy Systems, Interdisciplinary Systems Res. 88, TUV Rheinland, Köln (Cologne), 1986, pp. 51–86.Google Scholar
  7. [7]
    Coulon, J., J.-L. Coulon, and U. Höhle, ‘Classification of extremal subobjects of algebras over SM-SET’, in Applications of Category Theory to Fuzzy Subsets (Linz, 1989). Kluwer Acad. Publ., Dordrecht, 1992, pp. 9–31.Google Scholar
  8. [8]
    DiNola, A., G. Georgescu and A. Iorgulescu, ‘Pseudo-BL-algebras I, II’, Multiple-Valued Logic 8:673–714 and 717–750, 2002.Google Scholar
  9. [9]
    Eytan, M., ‘Fuzzy sets: A topos-logical point of view’, Fuzzy Sets Syst. 5:47–67, 1981.CrossRefGoogle Scholar
  10. [10]
    Fourman, M. P., ‘The logic of topoi’, in J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland Publ. Comp., Amsterdam, 1977, pp. 1053–1090.Google Scholar
  11. [11]
    Fourman, M. P., and D. S. Scott, ‘Sheaves and logic’, in M. P. Fourman, C. J. Mulvey, and D. S. Scott (eds.), Applications of Sheaves, Lect. Notes Math. 753. Springer-Verlag, Berlin, 1979, pp. 302–401.Google Scholar
  12. [12]
    Goguen, J. A., ‘L-fuzzy sets’, J. Math. Anal. Appl. 18:145–174, 1967.CrossRefGoogle Scholar
  13. [13]
    Goguen, J. A., ‘Concept respresentation in natural and artificial languages: axioms, extensions and applications for fuzzy sets’, Int. J. Man-Machine Stud. 6:513–561, 1974.CrossRefGoogle Scholar
  14. [14]
    Gottwald, S., A Treatise on Many-valued Logics, Studies in Logic and Computation 9, Research Studies Press, Baldock, 2001.Google Scholar
  15. [15]
    Gottwald, S., ‘Universes of fuzzy sets and axiomatizations of fuzzy set theory. Part I: Model-based and axiomatic approaches’, Studia Logica 82:211–244, 2006.CrossRefGoogle Scholar
  16. [16]
    Gylys, R. P., ‘Quantal sets and sheaves over quantales’. Liet. Matem. Rink. 34:9–31, 1994.Google Scholar
  17. [17]
    Hájek, P., Metamathematics of Fuzzy Logic, Trends in Logic 4, Kluwer Acad. Publ., Dordrecht, 1998.Google Scholar
  18. [18]
    Hájek, P., ‘Fuzzy logics with non-commutative conjunctions’, J. Logic and Computation 13:469–479, 2003.CrossRefGoogle Scholar
  19. [19]
    Higgs, D., A Category Approach to Boolean-valued Set Theory. Preprint, Univ. of Waterloo, 1973.Google Scholar
  20. [20]
    Higgs, D., ‘Injectivity in the topos of complete Heyting algebra valued sets’, Canadian J. Math. 36:550–568, 1984.Google Scholar
  21. [21]
    Höhle, U., ‘M-valued sets and sheaves over integral commutative CL-monoids’, in S. E. Rodabaugh et al. (eds.), Applications of Category Theory to Fuzzy Subsets, TheoryDecis. Libr., Ser. B 14. Kluwer Acad. Publ., Dordrecht, 1992, pp. 34–72.Google Scholar
  22. [22]
    Höhle, U., ‘Commutative, residuated l-monoids’. in U. Höhle and E. P. Klement (eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets, Theory Decis. Libr., Ser. B. 32. Kluwer Acad. Publ., Dordrecht, 1995, pp. 53–106.Google Scholar
  23. [23]
    Höhle, U., ‘Presheaves over GL-monoids’. in U. Höhle and E. P. Klement (eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets, Theory Decis. Libr., Ser. B 32. Kluwer Acad. Publ., Dordrecht, 1995, pp. 127–157.Google Scholar
  24. [24]
    Höhle, U., ‘GL-quantales: Q-valuedsets andtheir singletons’, Studia Logica 61:123–148, 1998.CrossRefGoogle Scholar
  25. [25]
    Höhle, U., ‘Classification of subsheaves over GL-algebras’, in S. R. Buss, P. Hájek, and P. Pudlák, (eds.), Logic Colloquium ’98, Lect. Notes Logic 13, pp. 238–261. A K Peters, Ltd., Natick'MA, 2000.Google Scholar
  26. [26]
    Höhle, U., ‘Many-valued equalities and their representations’, in E. P. Klement and R. Mesiar (eds.), Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Dordrecht, 2005, pp. 301–319.Google Scholar
  27. [27]
    Höhle, U., ‘Sheaves on Quantales’ in: Proceedings Linz Seminar on Fuzzy Set Theory 2005. (in preparation)Google Scholar
  28. [28]
    Höhle, U., and L. N. Stout, ‘Foundations of fuzzy sets’, Fuzzy Sets Syst. 40:257–296, 1991.CrossRefGoogle Scholar
  29. [29]
    Jenei, S., and F. Montagna, ‘A proof of standard completeness for non-commutative monoidal t-norm logic’, Neural Network World 13:481–489, 2003.Google Scholar
  30. [30]
    Lawvere, F. W., ‘An elementary theory of the category of sets’, Proc.Nat.Acad. Sci. USA 52:1506–1511, 1964.CrossRefGoogle Scholar
  31. [31]
    Mac Lane, S., and I. Moerdijk, Sheaves in Geometry and Logic, Springer, New York, 1992.Google Scholar
  32. [32]
    Manes, E. G., Algebraic Theories, Springer, Berlin, 1976.Google Scholar
  33. [33]
    Mulvey, C. J., and M. Nawaz, ‘Quantales: Quantal sets’, in U. Höhle and E. P. Klement (eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets, Theory Decis. Libr., Ser. B. 32, Kluwer Acad. Publ., Dordrecht, 1995, pp. 159–217.Google Scholar
  34. [34]
    Pitts, A. M., ‘Fuzzy sets do not form a topos’ Fuzzy Sets Syst. 8:101–104, 1982.CrossRefGoogle Scholar
  35. [35]
    Ponasse, D., ‘Some remarks on the category Fuz(H) of M. Eytan’, Fuzzy Sets Syst. 9:199–204, 1983.CrossRefGoogle Scholar
  36. [36]
    Pultr, A., ‘Closed categories of L-fuzzy sets’, in Vorträge aus dem Problemseminar Automaten-und Algorithmentheorie (Weißig 1975). Techn. Univ. Dresden, Sektion Mathematik, Dresden, 1976, pp. 60–68.Google Scholar
  37. [37]
    Pultr, A., ‘Fuzziness and fuzzy equality’, in H. J. Skala, S. Termini, and E. Trillas (eds.), Aspects of Vagueness, Theory and Decision Libr. 39. Reidel, Dordrecht, 1984, pp. 119–135.Google Scholar
  38. [38]
    Rosenthal, K. I., Quantales and Their Applications, Pittman Res. Notes in Math. 234, Longman, Burnt Mill, Harlow, 1990.Google Scholar
  39. [39]
    Scott, D. S., ‘Continuous lattices’, in F. W. Lawvere (ed.), Toposes, Algebraic Geometry and Logic, Lect. Notes Math. 274. Springer-Verlag, Berlin, 1971, pp. 97–136.Google Scholar
  40. [40]
    Scott, D. S., ‘Identity and existence in intuitionistic logic’, in M. P. Fourman, C. J. Mulvey, and D. S. Scott (eds.), Applications of Sheaves, Lect. Notes Math. 753. Springer-Verlag, Berlin, 1979, pp. 660–696.Google Scholar
  41. [41]
    Shimoda, M., ‘Categorical aspects of Heyting-valued models for intuitionistic set theory’, Comment. Math. Univ. Sancti Pauli 30:17–35, 1981.Google Scholar
  42. [42]
    Stout, L. N., ‘Topoi and categories of fuzzy sets’, Fuzzy Sets Syst. 12:169–184, 1984.CrossRefGoogle Scholar
  43. [43]
    Stout, L. N., ‘A survey of fuzzy set and topos theory’, Fuzzy Sets Syst. 42:3–14, 1991.CrossRefGoogle Scholar
  44. [44]
    Stout, L. N., ‘Categories of fuzzy sets with values in a quantale or projectale’, in U. Höhle and E. P. Klement (eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets, Theory Decis. Libr., Ser. B. 32. Kluwer Acad. Publ., Dordrecht, 1995, pp. 219–234.Google Scholar
  45. [45]
    Takeuti, G., and S. Titani, ‘Intuitionistic fuzzy logic and intuitionistic fuzzy set theory’, J. Symb. Logic 49:851–866, 1984.CrossRefGoogle Scholar
  46. [46]
    Takeuti, G., and S. Titani, ‘Global intuitionistic fuzzy set theory’, in The Mathematics of Fuzzy Systems, Interdisciplinary Syst. Res. 88. TUV Rheinland, Köln (Cologne), 1986, pp. 291–301.Google Scholar
  47. [47]
    Takeuti, G., and S. Titani, ‘Fuzzy logic and fuzzy set theory’, Arch. Math. Logic, 32:1–32, 1992.CrossRefGoogle Scholar
  48. [48]
    Wyler, O., Lecture notes on topoi and quasitopoi, World Scientific, Singapore, 1991.Google Scholar
  49. [49]
    Wyler, O., ‘Fuzzy logic and categories of fuzzy sets’, in U. Höhle and E. P. Klement (eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets, Theory Decis. Libr., Ser. B. 32. Kluwer Acad. Publ., Dordrecht, 1995, pp. 235–268.Google Scholar
  50. [50]
    Zadeh, L. A., ‘Fuzzy sets’, Information and Control 8:338–353, 1965.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute for Logic and Philosophy of ScienceLeipzig UniversityLeipzigGermany

Personalised recommendations