Studia Logica

, Volume 80, Issue 2–3, pp 431–466 | Cite as

Socratic Proofs and Paraconsistency: A Case Study

  • Andrzej Wiśniewski
  • Guido Vanackere
  • Dorota Leszczyńska


This paper develops a new proof method for two propositional paraconsistent logics: the propositional part of Batens' weak paraconsistent logic CLuN and Schütte's maximally paraconsistent logic Φv. Proofs are de.ned as certain sequences of questions. The method is grounded in Inferential Erotetic Logic.


Socratic proofs paraconsistent logics logic of questions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BATENS, D., ‘Paraconsistent Extensional Propositional Logics’, Loqique & Analyse 90-91:195–234, 1980.Google Scholar
  2. [2]
    BATENS, D., ‘Dialectical Dynamics Within Formal Logics’, Logique & Analyse 114:161–173, 1986.Google Scholar
  3. [3]
    BATENS, D., ‘Dynamic Dialectical Logics’, in G. Priest, R. Routley, and J. Norman, (eds.), Paraconsistent Logic, pp. 187–217, Philosophia Verlag, München 1989.Google Scholar
  4. [4]
    BATENS, D., ‘Inconsistency-Adaptive Logics’, in E. Orłowska, (ed.), Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, pp. 445–472, Springer Verlag, Heidelberg—New York 1998.Google Scholar
  5. [5]
    BATENS, D., ‘Rich Inconsistency-Adaptive Logics. The Clash between Heuristic Effciency and Realistic Reconstruction’, in Logique en perspective. Mélanges offerts à Paul Gochet, eds. E. Grillet and F. Beets, pp. 513–543, Editions OUSIA, 2000.Google Scholar
  6. [6]
    BATENS, D., and K. DE CLERCQ, ‘A Rich Paraconsistent Extension of Full Positive Logic’,
  7. [7]
    BATENS, D., K. DE CLERCQ, and N. KURTONINA, ‘Embedding and Interpolation for some Paralogics. The Propositional Case’, Reports on Mathematical Logic 33:29–44, 1999.CrossRefGoogle Scholar
  8. [8]
    BATENS, D., and J. MEHEUS, ‘The Adaptive Logic of Compatibility’, Studia Logica 66:327–348, 2000.CrossRefGoogle Scholar
  9. [9]
    BATENS, D., and J. MEHEUS, ‘A Tableau Method for Inconsistency-Adaptive Logics’, in Automated Reasoning with Analytic Tableaux and Related Methods, ed. R. Dyckhoff, Lecture Notes in Artificial Intelligence, Springer, Berlin 2000, pp. 127–142.Google Scholar
  10. [10]
    BATENS, D., and J. MEHEUS, ‘Shortcuts and DynamicMarking in the Tableau Method for Adaptive Logics’, Studia Logica 69:221–248, 2001.CrossRefGoogle Scholar
  11. [11]
    SHOESMITH, D.J., and T.J. SMILEY, Multiple-conclusion Logic, Cambridge University Press, Cambridge 1978.Google Scholar
  12. [12]
    SCHÜTTE, K., Beweistheorie, Springer, Berlin 1960.Google Scholar
  13. [13]
    SMULLYAN, R.M., First-Order Logic, Springer, Berlin 1968.Google Scholar
  14. [14]
    TARSKI, A., ‘A simplified formalization of predicate logic with identity’, Archiv für Mathematische Logik und Grundlagenforschung 7:61–79, 1965.CrossRefGoogle Scholar
  15. [15]
    WIŚNIEWSKI, A., The Posing of Questions: Logical Foundations of Erotetic Inferences, Kluwer Academic Publishers, Dordrecht – Boston – London 1995.Google Scholar
  16. [16]
    WIŚNIEWSKI, A., ‘The logic of questions as a theory of erotetic arguments’, Synthese 109(1):1–25, 1996.CrossRefGoogle Scholar
  17. [17]
    WIŚNIEWSKI, A., ‘Questions and Inferences’, Logique et Analyse 173-174-175:5–43, 2001.Google Scholar
  18. [18]
    WIŚNIEWSKI, A., ‘Socratic Proofs’, Journal of Philosophical Logic 33(3): 299–326, 2004.CrossRefGoogle Scholar
  19. [19]
    WIŚNIEWSKI, A., and V. Shangin, ‘Socratic Proofs for Quantifiers’, Journal of Philosophical Logic, forthcoming.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Andrzej Wiśniewski
    • 1
  • Guido Vanackere
    • 2
  • Dorota Leszczyńska
    • 3
  1. 1.Section of Logic and Cognitive ScienceInstitute of Psychology, Adam Mickiewicz UniversityPoznańPoland
  2. 2.Centre for Logic and Philosophy of ScienceUniversity of GhentBelgium
  3. 3.Institute of PhilosophyUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations