Skip to main content
Log in

6,6′-Dimethyl-1,1′,5,5′-tetraaza-6,6′-bi(bicyclo[3.1.0]hexane): synthesis and investigation of molecular structure by quantum-chemical calculations, NMR spectroscopy and X-ray diffraction analysis

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A new diaziridine derivative with two bicyclic diaziridine-containing moieties in one molecule, 6,6′-dimethyl-1,1′,5,5′-tetraaza-6,6′-bi(bicyclo[3.1.0]hexane) (BiDiMDAH), has been synthesized for the first time. Its molecular structure has been investigated in the gas phase by means of quantum-chemical (QC) calculations, in CDCl3 solution by 1D and 2D NMR spectroscopy and in the solid state by the X-ray diffraction (XRD) technique. It was found by QC calculations that BiDiMDAH molecule in a free state presents a single conformer of C2 symmetry with trans orientation of the methyl groups about two carbons connecting diaziridine cycles. The 5-memebered rings in BiDiMDAH molecule has been found to be essentially planar. In order to explain conformational preferences of BiDiMDAH, natural bond orbitals (NBO) and atoms in molecules (AIM) analyses have been performed. According to the XRD data, BiDiMDAH crystallizes in space group P21/c with molecular structure resembling the structure obtained by the means of QC calculations for the lowest energy form. However, the relative arrangement of the methyl groups of the solid BiDiMDAH molecule is similar to that of the one of the transition states. The data of NMR spectroscopy has revealed that only one conformer is present in CDCl3 solution in agreement with the data of QC and XRD studies. The gaseous standard enthalpy of formation of BiDiMDAH has been estimated to be 106.1±1.2 kcal/mol by means of G4 theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kuznetsov VV, Makhova NN, Dekaprilevich MO (1999) 6,6′-Bis(1,5-diazabicyclo[3.1.0]hexane). Russ Chem Bull 48(3):617–619

    Article  CAS  Google Scholar 

  2. Petukhova VY, Kuznetsov VV, Shevtsov AV, Strelenko YA, Makhova NN, Lyssenko KA, Antipin MY (2001) Synthesis and structures of 1,1"-dialkyl-3,3"-bidiaziridines. Russ Chem Bull 50(3):440–444

    Article  CAS  Google Scholar 

  3. Kuznetsov VV, Kutepov SA, Makhova NN, Lyssenko KA, Dmitriev DE (2003) 1,5-Diazabicyclo[3.1.0]hexanes and 1,6-diazabicyclo[4.1.0]heptanes: a new method for the synthesis, quantum-chemical calculations, and X-ray diffraction study. Russ Chem Bull 52(3):665–673. https://doi.org/10.1023/a:1023962907733

    Article  CAS  Google Scholar 

  4. Atavin EG, Golubinskii AV, Popik MV, Kuznetsov VV, Makhova NN, Vilkov LV (2003) Electron diffraction study of the molecular structure of 6,6'-Bis(1,5-diazabicyclo[3.1.0]hexane). J Struct Chem 44(5):779–783. https://doi.org/10.1023/B:JORY.0000029814.51979.5e

    Article  CAS  Google Scholar 

  5. Atavin EG, Golubinsky AV, Popik MV, Kuznetsov VV, Makhova NN, Anikeeva AV, Vilkov LV (2003) Gas-phase electron diffraction and quantum-chemical studies of the molecular structure of N,N-dimethyldiaziridine. Zh Strukt Khim 44(5):784–789

    CAS  Google Scholar 

  6. Petukhova VY, Makhova NN, Ananikov VP, Strelenko YA, Fedyanin IV (2004) 1,2-Bis(methylamino)ethane-1,2-diol dihydrochloride as a new precursor of 1,2,1′′,2′′-tetramethyl-3,3′′-bidiaziridine. Russ Chem Bull 53(3):612–617

    Article  Google Scholar 

  7. Vishnevskiy YV, Vogt N, Vogt J, Rykov AN, Kuznetsov VV, Makhova NN, Vilkov LV (2008) Molecular structure of 1,5-diazabicyclo[3.1.0]hexane as determined by gas electron diffraction and quantum-chemical calculations. J Phys Chem А 112(23):5243–5250

    Article  CAS  Google Scholar 

  8. Vishnevskiy YV, Schwabedissen J, Rykov AN, Kuznetsov VV, Makhova NN (2015) Conformational and bonding properties of 3,3-dimethyl- and 6,6-dimethyl-1,5-diazabicyclo[3.1.0]hexane: a case study employing the Monte Carlo method in gas electron diffraction. J Phys Chem А 119(44):10871–10881

    Article  CAS  Google Scholar 

  9. Kuznetsov VV, Marochkin II, Goloveshkin AS, Makhova NN, Shishkov IF (2017) Comparable study of the structure of 1,2-bis(2-acetamidoethyl) diaziridine and 3,3-diethyldiaziridine with structures of related compounds by X-ray diffraction analysis and quantum chemical calculations. Struct Chem 28(4):1211–1221

    Article  CAS  Google Scholar 

  10. Altova EP, Kuznetsov VV, Marochkin II, Rykov AN, Makhova NN, Shishkov IF (2018) 3-Cyclopropyl-1,2-dimethyldiaziridine: synthesis and study of molecular structure by gas electron diffraction method. Struct Chem 29(3):815–822

    Article  CAS  Google Scholar 

  11. Marochkin II, Kuznetsov VV, Rykov AN, Makhova NN, Shishkov IF (2019) Molecular structure study of 1,2,3-trimethyldiaziridine by means of gas electron diffraction method. Struct Chem 30(2):457–464

    Article  CAS  Google Scholar 

  12. Khaikin LS, Kochikov IV, Rykov AN, Grikina OE, Ageev GG, Shishkov IF, Kuznetsov VV, Makhova NN (2019) Equilibrium structures of the tetramezine diastereomers and their ratio: joint analysis of gas phase electron diffraction, quantum chemistry, and spectroscopic data. Phys Chem Chem Phys 21(10):5598–5613

    Article  CAS  PubMed  Google Scholar 

  13. Marochkin II, Kuznetsov VV, Li Z, Rykov AN, Makhova NN, Shishkov IF (2020) Molecular structure of 1,2-diethyldiaziridine studied by gas electron diffraction supported by quantum chemistry calculations. J Mol Struct 1225:129066. https://doi.org/10.1016/j.molstruc.2020.129066

    Article  CAS  Google Scholar 

  14. Paget СJ, Davis CS (1964) Synthesis and in vitro activity of some aryl diaziridines as potential monoamine oxidase inhibitors. J Med Chem 7(5):626–628

    Article  CAS  PubMed  Google Scholar 

  15. Kostyanovskii RG, Shustov GV, Nabiev OL (1986) Synthesis and psychotropic activity of functionally substituted diaziridines and bisdiaziridines. Pharm Chem J 20(6):385–388

    Article  Google Scholar 

  16. Baichurina AZ, Semina II, Garaev RS (1996) Effects of amphazide (a hydrazide of phosphorylated carboxylic acids) and tetramezine (a diaziridine derivative) on central dopaminergic structures. Bull Exp Biol Med 121(6):584–586

    Article  Google Scholar 

  17. Makhova NN, Petukhova VY, Shevtsov AV, Novakovskiy VV, Kuznetsov VV (2013) Agents for treating neurodegenerative disorders, US Pat., WO 2013/111117 A2.

  18. Makhova NN, Petukhova VY, Shevtsov AV, Novakovskiy VV, Kuznetsov VV (2013) Agents for treating neurodegenerative disorders, US Pat., WO 2013/111118 A2.

  19. Makhova NN, Petukhova VY, Shevtsov AV, Novakovskiy VV, Kuznetsov VV (2013) Agents for treating neurodegenerative disorders, US Pat., WO 2013.121334 A2.

  20. Kuznetsov VV, Shevtsov AV, Pleschev MI, Strelenko YA, Makhova NN (2016) Diastereoselective synthesis of 1,3-di- and 1,3,3-trisubstituted diaziridines coupled with neurotransmitter amino acids. Mendeleev Commun 26(5):391–394

    Article  CAS  Google Scholar 

  21. Mannschreck A, Radeglia R, Gründemann E, Ohme R (1967) Protonenresonanz-Untersuchungenzur Inversion am dreibindigenStickstoffatom, I Der Diaziridin-Ring als Asymmetriezentrum. Chem Ber 100(6):1778–1785

    Article  CAS  Google Scholar 

  22. Shustov GV, Kadorkina GK, Varlamov SV, Kachanov AV, Kostyanovskii RG, Rauk AJ (1992) The nonplanar amide group in N-acylaziridines: conformational behavior and chiroptical properties. J Am Chem Soc 114(5):1616–1623

    Article  CAS  Google Scholar 

  23. Kamuf M, Trapp O (2011) Stereodynamics of tetramezine. Chirality 23(2):113–117

    Article  CAS  PubMed  Google Scholar 

  24. Makhova NN, Shevtsov AV, Petukhova VY (2011) Transformations of diaziridines and their fused analogues induced by electrophilic reagents. Russ Chem Rev 80(11):1085

    Article  CAS  Google Scholar 

  25. Petukhova VY, Pleshchev MI, Fershtat LL, Kuznetsov VV, Kachala VV, Makhova NN (2012) Metathesis of azomethine imines in the reaction of 6-aryl-1,5-diazabicyclo[3.1.0]hexanes with carbonyl compounds. Mendeleev Commun 22(1):32–34

    Article  CAS  Google Scholar 

  26. Pleshchev MI, Petukhova YS, Kuznetsov VV, Khakimov DV, Pivina TS, Struchkova MI, Nelyubina YV, Makhova NN (2013) Metathesis of azomethine imines in reaction of 6-aryl-1,5-diazabicyclo[3.1.0]hexanes with (Het)arylidenemalononitriles. MendeleevCommun 23(1):34–36

    CAS  Google Scholar 

  27. Pleshchev MI, DasGupta NV, Kuznetsov VV, Fedyanin IV, Kachala VV, Makhova NN (2015) CAN-mediated new, regioselective one-pot access to bicyclic cationic structures with 2,3-dihydro-1H-pyrazolo[1,2-a]pyrazol-4-ium core. Tetrahedron 71(47):9012–9021

    Article  CAS  Google Scholar 

  28. Chagarovskiy AO, Vasin VS, Kuznetsov VV, Ivanova OA, Rybakov VB, Shumsky AN, Makhova NN, Trushkov IV (2018) (3+3)-annulation of donor–acceptor cyclopropanes with diaziridines. Angew Chem Int Ed 57(32):10338–10342

    Article  CAS  Google Scholar 

  29. Chagarovskiy AO, Kuznetsov VV, Ivanova OA, Goloveshkin AS, Levina II, Makhova NN, Trushkov IV (2019) Synthesis of 1-substituted pyrazolines by reaction of donor-acceptor cyclopropanes with 1,5-diazabicyclo[3.1.0]hexanes. Eur J Org Chem 2019(32):5475–5485

    Article  CAS  Google Scholar 

  30. Sundaresan R, Jesin I, Arivalagan S,Nandia GC (2021) Recent advances in the preparations and synthetic applications of oxaziridines and diaziridines advanced synthesis & catalysis. DOI: https://doi.org/10.1002/adsc.202001372.

  31. Zhang X, Shen L, Luo Y, Jiang R, Sun H, Liu J, Fang T, Fan H, Liu Z (2017) Synthesis and ignition properties research of 1,5-diazabicyclo[3.1.0]hexane type compounds as potential green hypergolic propellants. Ind Eng Chem Res 56(11):2883–2888

    Article  CAS  Google Scholar 

  32. Kuznetsov VV, Kachala VV, Маkhova NN (2018) Synthesis of hybrid structures comprising diaziridine and cyclopropane rings in one molecule. Mendeleev Commun 28(5):497–500

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 (Revision B01), Wallingford CT

  34. Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23(2):69

    Article  CAS  Google Scholar 

  35. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  37. Møller C, Plesset MS (1934) Note on an Approximation treatment for many-electron systems. Phys Rev 46(7):618

    Article  Google Scholar 

  38. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89(4):2193

    Article  CAS  Google Scholar 

  39. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys 72(10):5639–5648

    Article  CAS  Google Scholar 

  40. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements. Li–F. J Comput Chem 4(3):294–301

    Article  CAS  Google Scholar 

  41. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    Article  CAS  Google Scholar 

  42. Glendening ED, Landis CR, Weinhold F (2019) NBO 7.0: New vistas in localized and delocalized chemical bonding theory. J Comput Chem 40:2234–2241

    Article  CAS  PubMed  Google Scholar 

  43. Weinhold F, Landis CR (2012) Discovering chemistry with natural bond orbitals. Upper Saddle River, NJ

    Book  Google Scholar 

  44. NBO 7.0 Program Manual. Madison, Wisconsin. https://nbo6.chem.wisc.edu/nboman.pdf. Accessed 22 April 2021

  45. Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford Univ. Press, NY

    Google Scholar 

  46. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000. J Comput Chem 22(5):545–559

    Article  Google Scholar 

  47. Biegler-König F, Schönbohm J (2002) Update of the AIM2000-Program for atoms in molecules. J Comput Chem 23(15):1489–1494

    Article  PubMed  CAS  Google Scholar 

  48. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127:124105

    Article  PubMed  CAS  Google Scholar 

  49. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42(2):339–341

    Article  CAS  Google Scholar 

  50. Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JAK, Puschmann H (2015) The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment – Olex2 dissected. Acta Cryst A 71(1):59–75

    Article  CAS  Google Scholar 

  51. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64(1):112–122

    Article  CAS  Google Scholar 

  52. Pauling L (1948) The nature of the chemical bond2nd edn. Ithaca, NY

    Google Scholar 

  53. Weinhold F (2012) Natural bond critical point analysis: quantitative relationships between NBO-based and QTAIM-based topological descriptors of chemical bonding. J Comput Chem 33(30):2440–2449

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was made with financial support of the Russian Foundation for Basic Research (Grant number 20-03-00747 A). X-ray diffraction data were performed with the financial support from the Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for molecular composition studies of A. N. Nesmeyanov Institute of Organoelement Compounds.

Author information

Authors and Affiliations

Authors

Contributions

Inna N. Kolesnikova: conceptualization, QC computations, writing of original draft. Vladimir V. Kuznetsov: synthesis, NMR spectroscopy investigations, editing of original draft. Alexander S. Goloveshkin: XRD analysis. Nikolai A. Chegodaev: QC computations. Nina N. Makhova: NMR spectroscopy investigations, editing of original draft. Igor F. Shishkov: supervision, editing of original draft.

Corresponding author

Correspondence to Inna Nikolaevna Kolesnikova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikova, I.N., Kuznetsov, V.V., Goloveshkin, A.S. et al. 6,6′-Dimethyl-1,1′,5,5′-tetraaza-6,6′-bi(bicyclo[3.1.0]hexane): synthesis and investigation of molecular structure by quantum-chemical calculations, NMR spectroscopy and X-ray diffraction analysis. Struct Chem 32, 2303–2312 (2021). https://doi.org/10.1007/s11224-021-01806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01806-x

Keywords

Navigation