Abstract
Ferrocenyl-, triazole- and quinoline-containing compounds are known to possess potential for biological activities. The synthesis and biological activities of O-alkylated quinoline derivatives, attached to the ferrocene moiety through 1,2,3-triazole bridge, have been reported earlier. Compounds in which triazole ring is directly bonded to ferrocene skeleton were more active in terms of cytotoxicity and reactive oxygen species generation, as compared to those analogues which contain a spacer between triazole ring and ferrocene skeleton. The first aim of this paper was to explore how small difference on surface of the molecules influence their supramolecular assembling. For these reasons, we performed detailed X-ray crystal structure analysis of five ferrocene-quinoline conjugates. In addition, as electronic structure and electrochemical properties could be important for antiproliferative activities of these conjugates, electrochemical measurements and computational analysis have been performed. In all structures, C-H···N and C-H···F hydrogen bonds form one-dimensional or two-dimensional networks, which are further linked by C-H···π and π···π interactions into higher order supramolecular structures. Conformational search at the M06L level revealed that crystal structures of ferrocene conjugates retained their geometries in solution. This confirmed that solid-state structural properties are relevant for electrochemistry and bioactivity discussion. Derivatives in which triazole ring is directly coupled to the ferrocene have lower redox potential values, which suggest higher antioxidant capacity. This was supported by DFT calculation in which frontier molecular orbitals were used as descriptors for redox behaviour of the respective ferrocene conjugates.
This is a preview of subscription content, access via your institution.








Data availability
The CCDC 1993666-1993670 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.
Code availability
Not applicable.
References
Bladin JA (1885). Ber Dtsch Chem Ges 18:1544–1551
Andreocci A (1889). Gazz Chim Ital 19:448–452
Agard NJ, Prescher JA, Bertozzi CR (2004). J Am Chem Soc 126:15046–15047
Giel M-C, Smedley CJ, Mackie ERR, Guo T, Dong J, Soares da Costa TP, Moses JE (2020). Angew Chem Int Ed 132:1197–1202
Agalave G, Maujan SR, Pore VS (2011). Chem Asian J 6:2696–2718
Zhang P, Yamamoto T, Suginome M (2019). ChemCatChem 11:424–429
Ruiz-Mendoza FJ, Mendoza-Espinosa D, González-Montiel S (2018). Eur J Inorg Chem:4622–4629
Klenk S, Rupf S, Suntrup L, van der Meer M, Sarkar B (2017). Organometallics 36:2026–2035
Suntrup L, Stein F, Hermann G, Kleoff M, Kuss-Petermann M, Klein J, Wenger OS, Tremblay JC, Sarkar B (2018). Inorg Chem 57:13973–13984
Liu Y, Kjaer KS, Fredin LA, Chábera P, Harlang T, Canton SE, Lidin S, Zhang J, Lomoth R, Bergquist K-E, Persson P, Wärnmark K, Sundström V (2015). Chem-Eur J 21:3628–3639
Naziruddin AR, Lee C-S, Lin W-J, Sun B-J, Chao K-H, Chang AHH, Hwang W-S (2016). Dalton Trans 45:5848–5859
Soellner J, Tenne M, Wagenblast G, Strassner T (2016). Chem-Eur J 22:9914–9918
Maity R, van der Meer M, Sarkar B (2015). Dalton Trans 44:46–49
van der Meer M, Glais E, Siewert I, Sarkar B (2015). Angew Chem Int Ed 54:13792–13795
Leigh V, Ghattas W, Lalrempuia R, Müller-Bunz H, Pryce MT, Albrecht M (2013). Inorg Chem 52:5395–5402
Suntrup L, Klenk S, Klein J, Sobottka S, Sarkar B (2017). Inorg Chem 56:5771–5783
Li Y, Lei S, Liu Y (2019). ChemistrySelect 4:1015–1018
Dai Z-C, Chen Y-F, Zhang M, Li S-K, Yang T-T, Shen L, Wang J-X, Qian S-S, Zhu H-L, Ye Y-H (2015). Org Biomol Chem 13:477–486
Sabat N, Migianu-Griffoni E, Tudela T, Lecouvey M, Kellouche S, Carreiras F, Gallier F, Uziel J, Lubin-Germain N (2020). Eur J Med Chem 188:112009
Zhao R, Liao Y, Yan T, Cai M (2020). Appl Organomet Chem 34:1–12
Mathew P, Neels A, Albrecht M (2008). J Am Chem Soc 130:13534–13535
Bräse S, Gil C, Knepper K, Zimmermann V (2005). Angew Chem Int Ed 44:5188–5240
Kolb HC, Finn MG, Sharpless KB (2001). Angew Chem Int Ed 40:2004–2021
Aucamp D, Kumar SV, Liles DC, Fernandes MA, Harmse L, Bezuidenhout DI (2018). Dalton Trans 47:16072–16081
Flores-Jarillo M, Mendoza-Espinosa D, Salazar-Pereda V, González-Montiel S (2017). Organometallics 36:4305–4312
Hettmanczyk L, Manck S, Hoyer C, Hohloch S, Sarkar B (2015). Chem Commun 51:10949–10952
Frutos M, Gómez-Gallego M, Giner EA, Sierra MA, Ramírez de Arellano C (2018) Dalton Trans 47:9975–9979
Matteucci E, Monti F, Mazzoni R, Baschieri A, Bizzarri C, Sambri L (2018). Inorg Chem 57:11673–11686
Pretorius R, Olguín J, Albrecht M (2017). Inorg Chem 56:12410–12420
Sinn S, Schulze B, Friebe C, Brown DG, Jäger M, Kübel J, Dietzek B, Berlinguette CP, Schubert US (2014). Inorg Chem 53:1637–1645
Sinn S, Schulze B, Friebe C, Brown DG, Jäger M, Altuntaş E, Kübel J, Guntner O, Berlinguette CP, Dietzek B, Schubert US (2014). Inorg Chem 53:2083–2095
Riedl CA, Flocke LS, Hejl M, Roller A, Klose MHM, Jakupec MA, Kandioller W, Keppler BK (2017). Inorg Chem 56:528–541
Kralj J, Bolje A, Polančec DS, Steiner I, Gržan T, Tupek A, Stojanović N, Hohloch S, Urankar D, Osmak M, Sarkar B, Brozovic A, Košmrlj J (2019). Organometallics 38:4082–4092
Bolje A, Hohloch S, van der Meer M, Košmrlj J, Sarkar B (2015). Chem-Eur J 21:6756–6764
Schweinfurth D, Hettmanczyk L, Suntrup L, Sarkar B (2017). Z Anorg Allg Chem 643:554–584
Vanicek S, Podewitz M, Stubbe J, Schulze D, Kopacka H, Wurst K, Müller T, Lippmann P, Haslinger S, Schottenberger H, Liedl KR, Ott I, Sarkar B, Bildstein B (2018). Chem-Eur J 24:3742–3753
Vanicek S, Wurst K, Kopacka H, Bildstein B (2018). IUCrData 3:x180623
Vanicek S, Jochriem M, Hassenrück C, Roy S, Kopacka H, Wurst K, Müller T, Winter RF, Reisner E, Bildstein B (2019). Organometallics 38:1361–1371
Vanicek S, Beerhues J, Bens T, Levchenko V, Wurst K, Bildstein B, Tilset M, Sarkar B (2019). Organometallics 38:4383–4386
Hettmanczyk L, Suntrup L, Klenk S, Hoyer C, Sarkar B (2017). Chem Eur J 23:576–585
Marichev KO, Patil SA, Bugarin A (2018). Tetrahedron 74:2523–2546
Thakur A, Mandal D, Ghosh S (2013). J Organomet Chem 726:71–78
Iwasaki H, Yamada Y, Ishikawa R, Koga Y, Matsubara K (2016). Eur J Org Chem 2016:1651–1654
Vivancos Á, Segarra C, Albrecht M (2018). Chem Rev 118:9493–9586
Aucamp D, Witteler T, Dielmann F, Siangwata S, Liles DC, Smith GS, Bezuidenhout DI (2017). Eur J Inorg Chem 2017:1227–1236
White NG, Beer PD (2012). Beilstein J Org Chem 8:246–252
Schrage BR, Zhao Z, Boika A, Ziegler CJ (2019). J Organomet Chem 897:23–31
Alfonso M, Espinosa Ferao A, Tárraga A, Molina P (2015). Inorg Chem 54:7461–7473
Ramadevi P, Singh R, Jana SS, Devkar R, Chakraborty D (2015). J Photochem Photobiol A 305:1–10
Maračić S, Lapić J, Djaković S, Opačak-Bernardi T, Glavaš-Obrovac L, Vrček V, Raić-Malić S (2019). Appl Organomet Chem 33:e4628
Singh A, Lumb I, Mehra V, Kumar V (2019). Dalton Trans 48:2840–2860
CrysAlisPRO (2015) Agilent technologies Ltd. Yarnton, Oxfordshire, England
Burla MC, Caliandro R, Carrozzini B, Cascarano GL, Cuocci C, Giacovazzo C, Mallamo M, Mazzone A, Polidori G (2015). J Appl Crystallogr 48:306–309
Sheldrick GM (2015). Acta Crystallogr C71:3–8
Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009). J Appl Crystallogr 42:339–341
Spek AL (2009). Acta Crystallogr D65:148–155
Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van De Streek J (2006). J Appl Crystallogr 39:453–457
Zhao Y, Truhlar DG (2006). J Chem Phys 125:194101
Gusev DG (2013). Organometallics 32:4239–4243
Zhao Y, Truhlar DG (2008). Acc Chem Res 41:157–167
Havaić V, Djaković S, Lapić J, Weitner T, Šakić D, Vrček V (2017). Croat Chem Acta 90:589–594
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratch DJ (2016) Gaussian 16, Rev. B.01, Wallingford, CT
Computer cluster Isabella - University of Zagreb, University computing centre, https://www.srce.unizg.hr/en/isabella-cluster (accessed February 2021)
Gilbert KE, Midland MM, PCMODEL, Serena Software: Box 3076, Bloomington, IN, 47402.
Gajewski JJ, Gilbert KE, McKelvey J (1990) In: Liotta D (ed) Advances in molecular modelling (Vol. 2). JAI Press, Greenwich, CT, p 66
Marenich AV, Cramer CJ, Truhlar DG (2009). J Phys Chem B 113:6378–6396
Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016). Acta Crystallogr B72:171–179
Otón F, del Carmen GM, Espinosa A, Tárraga A, Molina P (2012). Organometallics 31:2085–2096
Otón F, del Carmen GM, Espinosa A, Ramírez de Arellano C, Tárraga A, Molina P (2012). J Organomet Chem 77:10083–10092
Lin L, Berces A, Kraatz HB (1998). J Organomet Chem 556:11–20
LeSuer RJ, Buttolph C, Geiger WI (2004). Anal Chem 76:6395–6401
Aranzaes JR, Daniel MC, Astruc D (2006). Can J Chem 84:288–299
Gritzner G, Kuta J (1984). Pure Appl Chem 56:461–466
Zapata F, Caballero A, Molina P (2017). Eur J Inorg Chem 2017:237–241
Cao Q-Y, Pradhan T, Kim S, Kim JS (2011). Org Lett 13:4386–4389
Casas-Solvas JM, Ortiz-Salmerón E, Giménez-Martínez JJ, García-Fuentes L, Capitán-Vallvey LF, Santoyo-González F, Vargas-Berenguel A (2009). Chem-Eur J 15:710–725
Haaland A (1979). Acc Chem Res 12:415–422
Boccia A, Marrani AG, Stranges S, Zanoni R, Alagia M, Cossi M, Iozzi MF (2008). J Chem Phys 128:154315
Islam S, Wang F (2015). RSC Adv 5:11933–11941
Ivanov MV, Talipov MR, Navale TS, Rathore R (2018). J Phys Chem C 122:2539–2545
Matsumura-Inoue T, Kuroda K, Umezawa Y, Achiba Y (1989). J Chem Soc Faraday Trans 85:857–866
Conradie J (2015). J Phys Conf Ser 633:12045–12050
Toma M, Kuvek T, Vrček V (2020). J Phys Chem A 124:8029–8039
Funding
Financial support was provided by the Croatian Science Foundation, project numbers IP-2013-11-5596 and IP-2016-06-1137 and bilateral project between Croatia and Germany.
Author information
Authors and Affiliations
Contributions
Not applicable.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
ESM 1
(PDF 1683 kb)
Rights and permissions
About this article
Cite this article
Djaković, S., Maračić, S., Lapić, J. et al. Triazole-tethered ferrocene-quinoline conjugates: solid-state structure analysis, electrochemistry and theoretical calculations. Struct Chem 32, 2291–2301 (2021). https://doi.org/10.1007/s11224-021-01801-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11224-021-01801-2
Keywords
- Ferrocene
- Triazole
- Quinoline
- X-ray diffraction
- Electrochemistry
- DFT calculations