Skip to main content

Triazole-tethered ferrocene-quinoline conjugates: solid-state structure analysis, electrochemistry and theoretical calculations

Abstract

Ferrocenyl-, triazole- and quinoline-containing compounds are known to possess potential for biological activities. The synthesis and biological activities of O-alkylated quinoline derivatives, attached to the ferrocene moiety through 1,2,3-triazole bridge, have been reported earlier. Compounds in which triazole ring is directly bonded to ferrocene skeleton were more active in terms of cytotoxicity and reactive oxygen species generation, as compared to those analogues which contain a spacer between triazole ring and ferrocene skeleton. The first aim of this paper was to explore how small difference on surface of the molecules influence their supramolecular assembling. For these reasons, we performed detailed X-ray crystal structure analysis of five ferrocene-quinoline conjugates. In addition, as electronic structure and electrochemical properties could be important for antiproliferative activities of these conjugates, electrochemical measurements and computational analysis have been performed. In all structures, C-H···N and C-H···F hydrogen bonds form one-dimensional or two-dimensional networks, which are further linked by C-H···π and π···π interactions into higher order supramolecular structures. Conformational search at the M06L level revealed that crystal structures of ferrocene conjugates retained their geometries in solution. This confirmed that solid-state structural properties are relevant for electrochemistry and bioactivity discussion. Derivatives in which triazole ring is directly coupled to the ferrocene have lower redox potential values, which suggest higher antioxidant capacity. This was supported by DFT calculation in which frontier molecular orbitals were used as descriptors for redox behaviour of the respective ferrocene conjugates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The CCDC 1993666-1993670 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

Code availability

Not applicable.

References

  1. Bladin JA (1885). Ber Dtsch Chem Ges 18:1544–1551

    Article  Google Scholar 

  2. Andreocci A (1889). Gazz Chim Ital 19:448–452

    Google Scholar 

  3. Agard NJ, Prescher JA, Bertozzi CR (2004). J Am Chem Soc 126:15046–15047

    Article  CAS  PubMed  Google Scholar 

  4. Giel M-C, Smedley CJ, Mackie ERR, Guo T, Dong J, Soares da Costa TP, Moses JE (2020). Angew Chem Int Ed 132:1197–1202

    Article  Google Scholar 

  5. Agalave G, Maujan SR, Pore VS (2011). Chem Asian J 6:2696–2718

    Article  CAS  PubMed  Google Scholar 

  6. Zhang P, Yamamoto T, Suginome M (2019). ChemCatChem 11:424–429

    Article  CAS  Google Scholar 

  7. Ruiz-Mendoza FJ, Mendoza-Espinosa D, González-Montiel S (2018). Eur J Inorg Chem:4622–4629

  8. Klenk S, Rupf S, Suntrup L, van der Meer M, Sarkar B (2017). Organometallics 36:2026–2035

    Article  CAS  Google Scholar 

  9. Suntrup L, Stein F, Hermann G, Kleoff M, Kuss-Petermann M, Klein J, Wenger OS, Tremblay JC, Sarkar B (2018). Inorg Chem 57:13973–13984

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Kjaer KS, Fredin LA, Chábera P, Harlang T, Canton SE, Lidin S, Zhang J, Lomoth R, Bergquist K-E, Persson P, Wärnmark K, Sundström V (2015). Chem-Eur J 21:3628–3639

    Article  CAS  PubMed  Google Scholar 

  11. Naziruddin AR, Lee C-S, Lin W-J, Sun B-J, Chao K-H, Chang AHH, Hwang W-S (2016). Dalton Trans 45:5848–5859

    Article  CAS  PubMed  Google Scholar 

  12. Soellner J, Tenne M, Wagenblast G, Strassner T (2016). Chem-Eur J 22:9914–9918

    Article  CAS  PubMed  Google Scholar 

  13. Maity R, van der Meer M, Sarkar B (2015). Dalton Trans 44:46–49

    Article  CAS  PubMed  Google Scholar 

  14. van der Meer M, Glais E, Siewert I, Sarkar B (2015). Angew Chem Int Ed 54:13792–13795

    Article  CAS  Google Scholar 

  15. Leigh V, Ghattas W, Lalrempuia R, Müller-Bunz H, Pryce MT, Albrecht M (2013). Inorg Chem 52:5395–5402

    Article  CAS  PubMed  Google Scholar 

  16. Suntrup L, Klenk S, Klein J, Sobottka S, Sarkar B (2017). Inorg Chem 56:5771–5783

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Lei S, Liu Y (2019). ChemistrySelect 4:1015–1018

    Article  CAS  Google Scholar 

  18. Dai Z-C, Chen Y-F, Zhang M, Li S-K, Yang T-T, Shen L, Wang J-X, Qian S-S, Zhu H-L, Ye Y-H (2015). Org Biomol Chem 13:477–486

    Article  CAS  PubMed  Google Scholar 

  19. Sabat N, Migianu-Griffoni E, Tudela T, Lecouvey M, Kellouche S, Carreiras F, Gallier F, Uziel J, Lubin-Germain N (2020). Eur J Med Chem 188:112009

    Article  CAS  PubMed  Google Scholar 

  20. Zhao R, Liao Y, Yan T, Cai M (2020). Appl Organomet Chem 34:1–12

    Google Scholar 

  21. Mathew P, Neels A, Albrecht M (2008). J Am Chem Soc 130:13534–13535

    Article  CAS  PubMed  Google Scholar 

  22. Bräse S, Gil C, Knepper K, Zimmermann V (2005). Angew Chem Int Ed 44:5188–5240

    Article  CAS  Google Scholar 

  23. Kolb HC, Finn MG, Sharpless KB (2001). Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  24. Aucamp D, Kumar SV, Liles DC, Fernandes MA, Harmse L, Bezuidenhout DI (2018). Dalton Trans 47:16072–16081

    Article  CAS  PubMed  Google Scholar 

  25. Flores-Jarillo M, Mendoza-Espinosa D, Salazar-Pereda V, González-Montiel S (2017). Organometallics 36:4305–4312

    Article  CAS  Google Scholar 

  26. Hettmanczyk L, Manck S, Hoyer C, Hohloch S, Sarkar B (2015). Chem Commun 51:10949–10952

    Article  CAS  Google Scholar 

  27. Frutos M, Gómez-Gallego M, Giner EA, Sierra MA, Ramírez de Arellano C (2018) Dalton Trans 47:9975–9979

  28. Matteucci E, Monti F, Mazzoni R, Baschieri A, Bizzarri C, Sambri L (2018). Inorg Chem 57:11673–11686

    Article  CAS  PubMed  Google Scholar 

  29. Pretorius R, Olguín J, Albrecht M (2017). Inorg Chem 56:12410–12420

    Article  CAS  PubMed  Google Scholar 

  30. Sinn S, Schulze B, Friebe C, Brown DG, Jäger M, Kübel J, Dietzek B, Berlinguette CP, Schubert US (2014). Inorg Chem 53:1637–1645

    Article  CAS  PubMed  Google Scholar 

  31. Sinn S, Schulze B, Friebe C, Brown DG, Jäger M, Altuntaş E, Kübel J, Guntner O, Berlinguette CP, Dietzek B, Schubert US (2014). Inorg Chem 53:2083–2095

    Article  CAS  PubMed  Google Scholar 

  32. Riedl CA, Flocke LS, Hejl M, Roller A, Klose MHM, Jakupec MA, Kandioller W, Keppler BK (2017). Inorg Chem 56:528–541

    Article  CAS  PubMed  Google Scholar 

  33. Kralj J, Bolje A, Polančec DS, Steiner I, Gržan T, Tupek A, Stojanović N, Hohloch S, Urankar D, Osmak M, Sarkar B, Brozovic A, Košmrlj J (2019). Organometallics 38:4082–4092

    Article  CAS  Google Scholar 

  34. Bolje A, Hohloch S, van der Meer M, Košmrlj J, Sarkar B (2015). Chem-Eur J 21:6756–6764

    Article  CAS  PubMed  Google Scholar 

  35. Schweinfurth D, Hettmanczyk L, Suntrup L, Sarkar B (2017). Z Anorg Allg Chem 643:554–584

    Article  CAS  Google Scholar 

  36. Vanicek S, Podewitz M, Stubbe J, Schulze D, Kopacka H, Wurst K, Müller T, Lippmann P, Haslinger S, Schottenberger H, Liedl KR, Ott I, Sarkar B, Bildstein B (2018). Chem-Eur J 24:3742–3753

    Article  CAS  PubMed  Google Scholar 

  37. Vanicek S, Wurst K, Kopacka H, Bildstein B (2018). IUCrData 3:x180623

    Article  CAS  Google Scholar 

  38. Vanicek S, Jochriem M, Hassenrück C, Roy S, Kopacka H, Wurst K, Müller T, Winter RF, Reisner E, Bildstein B (2019). Organometallics 38:1361–1371

    Article  CAS  PubMed  Google Scholar 

  39. Vanicek S, Beerhues J, Bens T, Levchenko V, Wurst K, Bildstein B, Tilset M, Sarkar B (2019). Organometallics 38:4383–4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hettmanczyk L, Suntrup L, Klenk S, Hoyer C, Sarkar B (2017). Chem Eur J 23:576–585

    Article  CAS  PubMed  Google Scholar 

  41. Marichev KO, Patil SA, Bugarin A (2018). Tetrahedron 74:2523–2546

    Article  CAS  Google Scholar 

  42. Thakur A, Mandal D, Ghosh S (2013). J Organomet Chem 726:71–78

    Article  CAS  Google Scholar 

  43. Iwasaki H, Yamada Y, Ishikawa R, Koga Y, Matsubara K (2016). Eur J Org Chem 2016:1651–1654

    Article  CAS  Google Scholar 

  44. Vivancos Á, Segarra C, Albrecht M (2018). Chem Rev 118:9493–9586

    Article  CAS  PubMed  Google Scholar 

  45. Aucamp D, Witteler T, Dielmann F, Siangwata S, Liles DC, Smith GS, Bezuidenhout DI (2017). Eur J Inorg Chem 2017:1227–1236

    Article  CAS  Google Scholar 

  46. White NG, Beer PD (2012). Beilstein J Org Chem 8:246–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schrage BR, Zhao Z, Boika A, Ziegler CJ (2019). J Organomet Chem 897:23–31

    Article  CAS  Google Scholar 

  48. Alfonso M, Espinosa Ferao A, Tárraga A, Molina P (2015). Inorg Chem 54:7461–7473

    Article  CAS  PubMed  Google Scholar 

  49. Ramadevi P, Singh R, Jana SS, Devkar R, Chakraborty D (2015). J Photochem Photobiol A 305:1–10

    Article  CAS  Google Scholar 

  50. Maračić S, Lapić J, Djaković S, Opačak-Bernardi T, Glavaš-Obrovac L, Vrček V, Raić-Malić S (2019). Appl Organomet Chem 33:e4628

    Article  CAS  Google Scholar 

  51. Singh A, Lumb I, Mehra V, Kumar V (2019). Dalton Trans 48:2840–2860

    Article  CAS  PubMed  Google Scholar 

  52. CrysAlisPRO (2015) Agilent technologies Ltd. Yarnton, Oxfordshire, England

    Google Scholar 

  53. Burla MC, Caliandro R, Carrozzini B, Cascarano GL, Cuocci C, Giacovazzo C, Mallamo M, Mazzone A, Polidori G (2015). J Appl Crystallogr 48:306–309

    Article  CAS  Google Scholar 

  54. Sheldrick GM (2015). Acta Crystallogr C71:3–8

    Google Scholar 

  55. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009). J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  56. Spek AL (2009). Acta Crystallogr D65:148–155

    Google Scholar 

  57. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van De Streek J (2006). J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  58. Zhao Y, Truhlar DG (2006). J Chem Phys 125:194101

    Article  PubMed  CAS  Google Scholar 

  59. Gusev DG (2013). Organometallics 32:4239–4243

    Article  CAS  Google Scholar 

  60. Zhao Y, Truhlar DG (2008). Acc Chem Res 41:157–167

    Article  CAS  PubMed  Google Scholar 

  61. Havaić V, Djaković S, Lapić J, Weitner T, Šakić D, Vrček V (2017). Croat Chem Acta 90:589–594

    Article  CAS  Google Scholar 

  62. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratch DJ (2016) Gaussian 16, Rev. B.01, Wallingford, CT

  63. Computer cluster Isabella - University of Zagreb, University computing centre, https://www.srce.unizg.hr/en/isabella-cluster (accessed February 2021)

  64. Gilbert KE, Midland MM, PCMODEL, Serena Software: Box 3076, Bloomington, IN, 47402.

  65. Gajewski JJ, Gilbert KE, McKelvey J (1990) In: Liotta D (ed) Advances in molecular modelling (Vol. 2). JAI Press, Greenwich, CT, p 66

    Google Scholar 

  66. Marenich AV, Cramer CJ, Truhlar DG (2009). J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  67. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016). Acta Crystallogr B72:171–179

    Google Scholar 

  68. Otón F, del Carmen GM, Espinosa A, Tárraga A, Molina P (2012). Organometallics 31:2085–2096

    Article  CAS  Google Scholar 

  69. Otón F, del Carmen GM, Espinosa A, Ramírez de Arellano C, Tárraga A, Molina P (2012). J Organomet Chem 77:10083–10092

  70. Lin L, Berces A, Kraatz HB (1998). J Organomet Chem 556:11–20

    Article  CAS  Google Scholar 

  71. LeSuer RJ, Buttolph C, Geiger WI (2004). Anal Chem 76:6395–6401

    Article  CAS  PubMed  Google Scholar 

  72. Aranzaes JR, Daniel MC, Astruc D (2006). Can J Chem 84:288–299

    Article  Google Scholar 

  73. Gritzner G, Kuta J (1984). Pure Appl Chem 56:461–466

    Article  Google Scholar 

  74. Zapata F, Caballero A, Molina P (2017). Eur J Inorg Chem 2017:237–241

    Article  CAS  Google Scholar 

  75. Cao Q-Y, Pradhan T, Kim S, Kim JS (2011). Org Lett 13:4386–4389

    Article  CAS  PubMed  Google Scholar 

  76. Casas-Solvas JM, Ortiz-Salmerón E, Giménez-Martínez JJ, García-Fuentes L, Capitán-Vallvey LF, Santoyo-González F, Vargas-Berenguel A (2009). Chem-Eur J 15:710–725

    Article  CAS  PubMed  Google Scholar 

  77. Haaland A (1979). Acc Chem Res 12:415–422

    Article  CAS  Google Scholar 

  78. Boccia A, Marrani AG, Stranges S, Zanoni R, Alagia M, Cossi M, Iozzi MF (2008). J Chem Phys 128:154315

    Article  CAS  PubMed  Google Scholar 

  79. Islam S, Wang F (2015). RSC Adv 5:11933–11941

    Article  CAS  Google Scholar 

  80. Ivanov MV, Talipov MR, Navale TS, Rathore R (2018). J Phys Chem C 122:2539–2545

    Article  CAS  Google Scholar 

  81. Matsumura-Inoue T, Kuroda K, Umezawa Y, Achiba Y (1989). J Chem Soc Faraday Trans 85:857–866

    Article  CAS  Google Scholar 

  82. Conradie J (2015). J Phys Conf Ser 633:12045–12050

    Article  CAS  Google Scholar 

  83. Toma M, Kuvek T, Vrček V (2020). J Phys Chem A 124:8029–8039

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support was provided by the Croatian Science Foundation, project numbers IP-2013-11-5596 and IP-2016-06-1137 and bilateral project between Croatia and Germany.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding authors

Correspondence to Valerije Vrček or Mario Cetina.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1683 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Djaković, S., Maračić, S., Lapić, J. et al. Triazole-tethered ferrocene-quinoline conjugates: solid-state structure analysis, electrochemistry and theoretical calculations. Struct Chem 32, 2291–2301 (2021). https://doi.org/10.1007/s11224-021-01801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01801-2

Keywords

  • Ferrocene
  • Triazole
  • Quinoline
  • X-ray diffraction
  • Electrochemistry
  • DFT calculations