Skip to main content

Advertisement

Log in

Mechanistic insight into the hydrogenation of acetylene on the Pd2/g-C3N4 catalyst: effect of Pd clustering on the barrier energy and selectivity

Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, the hydrogenation of acetylene on the Pd2/g-C3N4 catalyst is investigated by the density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) calculations. The pre-reactant (R), transition states (TSs), and the intermediates (IMs), involved in the hydrogenation process, are characterized from the point of view of energy and structure. The calculated energy barriers for the hydrogen transfer to the acetylene and ethylene are 6.77 and 12.28 kcal/mol, respectively, which shows that the Pd2/g-C3N4 catalyst has good selectivity for the conversion of acetylene to ethylene rather than ethane. Comparing the values of these energy barriers with those of the hydrogenation of acetylene on the Pd/g-C3N4 catalyst (21.53 and 38.88 kcal/mol, respectively) shows that the increase in the number of the Pd atoms decreases the energy barriers of the hydrogenation reaction and increases the selectivity of the catalyst for the ethylene production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Code availability

N/A.

References

  1. Pradier CM, Mazina M, Berthier Y, Oudar J (1994) Hydrogenation of acetylene on palladium. J Mol Catal 89:211–220

    Article  CAS  Google Scholar 

  2. Sarkany A, Geszti O, Safran G (2008) Preparation of Pd shell–Au core/SiO2 catalyst and catalytic activity for acetylene hydrogenation. Appl Catal A Gen 350:157–163

    Article  CAS  Google Scholar 

  3. Wang P, Yang B (2018) Influence of surface strain on activity and selectivity of Pd-based catalysts for the hydrogenation of acetylene: a DFT study. Chin J Catal 39:1493–1499

    Article  CAS  Google Scholar 

  4. Lopez N, Vargas-Fuentes C (2012) Promoters in the hydrogenation of alkynes in mixtures: insights from density functional theory. Chem Commun 48:1379–1391

    Article  CAS  Google Scholar 

  5. Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Norskov JK (2008) On the role of surface modifications of palladium catalysts in the selective hydrogenation of acetylene. Angew Chem Int Ed 47:9299–9302

    Article  CAS  Google Scholar 

  6. Vile G, Albani D, Nachtegaal M, Chen Z, Dontsova D, Antonietti M (2015) A stable single-site palladium catalyst for hydrogenations. Angew Chem 54:11265

    Article  CAS  Google Scholar 

  7. Huang X, Xia Y, Cao Y, Zheng X, Pan H, Zhu J (2017) Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res 10:1302–1312

    Article  CAS  Google Scholar 

  8. Kyriakou G, Boucher MB, Jewell AD, Lewis EA, Lawton TJ, Baber AE (2012) Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335:1209

    Article  CAS  PubMed  Google Scholar 

  9. Liu J, Bunes BR, Zang L, Wang C (2013) Supported single-atom catalysts: synthesis, characterization, properties, and applications. Environ Chem Lett 2017:1–29

    Google Scholar 

  10. Kang L, Cheng B, Zhu M (2019) Pd/MCM-41 catalyst for acetylene hydrogenation to ethylene. R Soc Open Sci 6:191155–191166

    Article  PubMed  PubMed Central  Google Scholar 

  11. Panpranot J, Kontapakdee K, Praserthdam P (2006) Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO2 supported Pd catalysts. Appl Catal A Gen 314:128–133

    Article  CAS  Google Scholar 

  12. Panpranot J, Kontapakdee K, Praserthdam P (2006) Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO2 in selective acetylene hydrogenation. J Phys Chem B 110:8019–8024

    Article  CAS  PubMed  Google Scholar 

  13. Meng LD, Wang GC (2014) A DFT + U study of acetylene selective hydrogenation over anatase supported PdaAgb (a + b = 4) cluster. Phys Chem Chem Phys 16:17541–17551

    Article  CAS  PubMed  Google Scholar 

  14. Yang J, Cao LX, Wang GC (2012) Acetylene hydrogenation on anatase TiO2 (101) supported Pd4 cluster: oxygen deficiency effect. J Mol Model 18:3329–3339

    Article  CAS  PubMed  Google Scholar 

  15. Ma LL, Lv CQ, Wang GC (2017) A DFT study and micro-kinetic analysis of acetylene selective hydrogenation on Pd-doped Cu (111) surfaces. Appl Surf Sci 410:154–165

    Article  CAS  Google Scholar 

  16. Yang J, Lv CQ, Guo Y, Wang GC (2012) A DFT+U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO2 supported Pd4 cluster. J Chem Phys 136:104107–104122

    Article  PubMed  CAS  Google Scholar 

  17. Li JN, Pu M, Ma CC, Tian Y, He J, Evans DJ (2012) The effect of palladium clusters (Pdn, n = 2–8) on mechanisms of acetylene hydrogenation: a DFT study. J Mol Catal A Chem 359:14–20

    Article  CAS  Google Scholar 

  18. Boyukata M, Belchior JC (2008) Molecular dynamics study of palladium clusters: size dependent analysis of structural stabilities and energetics of Pdn (n<40) via a Lennard-Jones type potential. Croat Chem Acta 81:289–297

    CAS  Google Scholar 

  19. Moc J, Musaev DJ, Morukama D (2003) Activation and adsorption of multiple H2molecules on a Pd5cluster: a density functional study. J Phys Chem A 107:4929–4939

    Article  CAS  Google Scholar 

  20. Zhou C, Yao S, Wu J, Forrey RC, Chen L, Tachibana A, Chen H (2008) Hydrogen dissociative chemisorption and desorption on saturated sub nano palladium clusters (Pdn, n = 2–9). Phys Chem Chem Phys 10:5445–5451

    Article  CAS  PubMed  Google Scholar 

  21. Cao Y, Sui Z, Zhu Y, Zhou X, Chen D (2017) Selective hydrogenation of acetylene over Pd-In/Al2O3catalyst: promotional effect of indium and composition-dependent performance. ACS Catal 7:7835–7846

    Article  CAS  Google Scholar 

  22. Albani D, Shahrokhi M, Chen Z, Mitchell S, Hauert R, Lopez N, Pérez-Ramírez J (2018) Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. J Nat Commun 9:2634–2644

    Article  CAS  Google Scholar 

  23. Volpe MA, Rodriguez P, Gigola CE (1999) Preparation of Pd–Pb/α-Al2O3 catalysts for selective hydrogenation using PbBu4: the role of metal-support boundary atoms and the formation of a stable surface complex. Catal Lett 61:27–32

    Article  CAS  Google Scholar 

  24. Anderson JA, Mellor J, Wells RPK (2009) Pd catalyzed hexyne hydrogenation modified by Bi and by Pb. J Catal 261:208–216

    Article  CAS  Google Scholar 

  25. Kim SK, Lee LH, Ahn IK, Kim WJ, Moon SH (2011) Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation. Appl Catal A Gen 401:12–19

    Article  CAS  Google Scholar 

  26. Gonzalez S, Neyman KM, Shaikhutdinov S, Freund HJ, Illas F (2007) On the promoting role of Ag in selective hydrogenation reactions over Pd–Ag bimetallic catalysts: a theoretical study. J Phys Chem C 111:6852–6856

    Article  CAS  Google Scholar 

  27. Mei D, Neurock M, Smith CM (2009) Hydrogenation of acetylene–ethylene mixtures over Pd and Pd–Ag alloys: first-principle based kinetic Monte Carlo simulations. J Catal 268:181–195

    Article  CAS  Google Scholar 

  28. Sheth PA, Neurock M, Smith CM (2009) First-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene–ethylene mixtures. J Phys Chem B 109:12449–12466

    Article  CAS  Google Scholar 

  29. Kumar N, Ghosh P (2016) Selectivity and reactivity of Pd-rich Pd-Ga surfaces toward selective hydrogenation of acetylene: interplay of surface roughness and ensemble effect. J Phys Chem C 120:28654–28663

    Article  CAS  Google Scholar 

  30. Osswald J, Giedigkeit R, Jentoft RE, Armbrüster M, Girgsdies F, Kovnir K (2008) Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylene. Part I. Preparation and structural investigation under reaction conditions. J Catal 258:210–218

    Article  CAS  Google Scholar 

  31. Zhou H, Yang X, Wang A, Miao S, Liu X, Pan X (2016) Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation. Chin J Catal 37:692–699

    Article  CAS  Google Scholar 

  32. Gulyaeva YK, Kaichev VV, Zaikovskii VI, Kovalyov EV, Suknev AP, Balzhinimaev BS (2015) Selective hydrogenation of acetylene over novel Pd/fiberglass catalysts. Catal Today 245:139–146

    Article  CAS  Google Scholar 

  33. Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang T (2015) Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc 137:10484–10487

    Article  CAS  PubMed  Google Scholar 

  34. Komhom S, Mekasuwandumrong O, Praserthdam P, Panpranot J (2008) Improvement of Pd/Al2O3 catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3 support. Catal Commun 10:86–91

    Article  CAS  Google Scholar 

  35. Hosseini SM, Ghiaci M, Kulinich SA, Wunderlich W, Farrokhpour H, Saraji M, Shahvar A (2018) Au-Pd@g-C3N4 as an efficient photocatalyst for visible-light oxidation of benzene to phenol: experimental and mechanistic study. J Phys Chem C 122:27477–27485

    Article  CAS  Google Scholar 

  36. Shahzeydi A, Ghiaci M, Farrokhpour H, Shahvar A, Sun M, Saraji M (2019) Facile and green synthesis of copper nanoparticles loaded on the amorphous carbon nitride for the oxidation of cyclohexane. Chem Eng J 370:1310–1321

    Article  CAS  Google Scholar 

  37. Nilforoushan S, Ghiaci M, Hosseini SM, Laurent S, Muller RN (2019) Selective liquid phase oxidation of ethyl benzene to acetophenone by palladium nanoparticles immobilized on a g-C3N4–rGO composite as a recyclable catalyst. New J Chem 46:6921–6931

    Article  Google Scholar 

  38. Zhao Y, Zhu M, Kang L (2018) The DFT study of single-atom Pd1/g-C3N4catalyst for selective acetylene hydrogenation reaction. Catal Lett 148:2992–3002

    Article  CAS  Google Scholar 

  39. Kang L, Zhu M, Zhao Y (2019) A DFT study of acetylene hydrogenation catalyzed by S-doped Pd1/g-C3N4. Catalysts 9:887–899

    Article  CAS  Google Scholar 

  40. Hosseini SM, Ghiaci M, Farrokhpour H (2019) The adsorption of small size Pd clusters on a g-C3N4 quantum dot: DFT and TD-DFT study. Mater Res Express 6:105079–105093

    Article  CAS  Google Scholar 

  41. Mei D, Sheth PA, Neurock M, Smith CM (2006) First-principles based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd (111). J Catal 242:1–15

    Article  CAS  Google Scholar 

  42. Krajci M, Hafner J (2011) Complex intermetallic compounds as selective hydrogenation catalysts—a case study for the (100) surface of Al13Co4. J Catal 278:200–207

    Article  CAS  Google Scholar 

  43. Krajci M, Hafner J (2012) Intermetallic compound AlPd as a selective hydrogenation catalyst: a DFT study. J Phys Chem C 116:6307–6319

    Article  CAS  Google Scholar 

  44. Singh NB, Sarkar U (2014) Structure, vibrational, and optical properties of platinum cluster: a density functional theory approach. J Mol Model 20:2537–2548

    Article  PubMed  CAS  Google Scholar 

  45. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  CAS  PubMed  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, rev D01. Gaussian, Inc, Wallingford

    Google Scholar 

Download references

Acknowledgements

The authors thank the Isfahan University of Technology (IUT) for its supports. The authors gratefully acknowledge the Shaikh Bahaie National High-Performance Computing Center (SBNHPCC) for providing a computing facility.

Funding

The authors thank the Isfahan University of Technology (IUT) for its supports.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the calculations; analyzed and interpreted the data; contributed materials, analysis tools, or data and software; and wrote the paper.

Corresponding author

Correspondence to Hossein Farrokhpour.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 504 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.M., Ghiaci, M. & Farrokhpour, H. Mechanistic insight into the hydrogenation of acetylene on the Pd2/g-C3N4 catalyst: effect of Pd clustering on the barrier energy and selectivity. Struct Chem 32, 2087–2097 (2021). https://doi.org/10.1007/s11224-021-01781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01781-3

Keywords

Navigation