Skip to main content

Advertisement

Log in

Understanding structural characteristics of PARP-1 inhibitors through combined 3D-QSAR and molecular docking studies and discovery of new inhibitors by multistage virtual screening

Structural Chemistry Aims and scope Submit manuscript

Abstract

Poly(ADP-ribose) polymerase (PARP) belongs to family of nuclear proteins having a critical role in base excision DNA repair system by catalysing the process of poly(ADP-ribosyl)ation leading to cell proliferation. The role of PARP inhibitors as anticancer agents was accepted after the approval of olaparib for the treatment of BRCA mutation-induced ovarian cancer. A combined ligand-based and receptor-based approach has been reported here for identification of PARP-1 inhibitors. Seventy one analogues of phthalazinone and 4-carboxamide benzimidazole showing activities against PARP-1 were used to develop ligand-based pharmacophore hypothesis using PHASE. The five-point pharmacophore hypothesis ADHRR.1031 was developed, and atom-based 3D-QSAR studies were carried. The developed 3D QSAR model has good correlation coefficient value (R2 = 0.952) and cross validated with correlation coefficient value (Q2 = 0.764). To further ascertain the structural requirement for PARP-1 inhibition, molecular interaction studies of inhibitors with PARP-1 were carried out by performing docking studies using Glide 5.6. Hydrogen bond interaction with Gly202 and Ser243 is an important interaction observed by the carboxyl amide group. The pharmacophore model depicts the importance of the hydrogen bond donor and acceptor nature of the carboxyl amide group. Further multistage virtual screening was performed to screen molecules with possible PARP-1 inhibition. Initial screening was performed based on pharmacophoric features followed by docking that consisted of HTVS, SP, and XP docking and final optimisation by Prime MM-GBSA calculation. The screened molecules were further scrutinised for their ADME-toxicity properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Morales JC, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, Gao J, Boothman DA (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24(1):15–28

    Article  PubMed  PubMed Central  Google Scholar 

  2. Riquelme PT, Burzio LO, Koide SS (1979) ADP ribosylation of rat liver lysine-rich histone in vitro. J Biol Chem 254(8):3018–3028

    Article  CAS  PubMed  Google Scholar 

  3. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens HM, Bono JS (2009) Inhibition of Poly(ADP-Ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134

    Article  CAS  PubMed  Google Scholar 

  4. Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, Hylands L, Riisnaes R, Forster M, Omlin A, Kreischer N, Thway K, Gevensleben H, Sun L, Loughney J, Chatterjee M, Toniatti C, Carpenter CL, Iannone R, Kaye SB, Bono JS, Wenham RM (2013) The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 14(9):882–892

    Article  CAS  PubMed  Google Scholar 

  5. Sandhu SK, Omlin A, Hylands L, Miranda S, Barber LJ, Riisnaes R, Reid AH, Attard G, Chen L, Kozarewa I, Gevensleben H, Campbell J, Fenwick K, Assiotis I, Olmos D, Yap TA, Fong P, Tunariu N, Koh D, Molife LR, Kaye S, Lord CJ, Ashworth A, Bono J (2013) Poly (ADP-ribose) polymerase (PARP) inhibitors for the treatment of advanced germline BRCA2 mutant prostate cancer. Ann Oncol 24:1416–1418

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki H, Quesada P, Farina B, Leone E (1986) In vitro poly (ADP-ribosyl)ation of seminal ribonuclease. J Biol Chem 261(13):6048–6055

    Article  CAS  PubMed  Google Scholar 

  7. Caplan AI, Rosenberg MJ (1975) Interrelationship between poly (ADP-Rib) synthesis, intracellular NAD levels, and muscle or cartilage differentiation from mesodermal cells of embryonic chick limb. Proc Natl Acad Sci U S A 72(5):1852–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Durkacz BW, Omidiji O, Gray DA, Shall S (1980) (ADP-Ribose)n participates in DNA excision repair. Nature 283:593–596

    Article  CAS  PubMed  Google Scholar 

  9. Miwa M, Oda K, Segawa K, Tanaka M, Irie S, Yamaguchi N, Kuchino T, Shiroki KH (1977) Cell density-dependent increase in chromatin-associated ADP-ribosyltransferase activity in simian virus 40-transformed cells. Arch Biochem Biophys 181(1):313–321

    Article  CAS  PubMed  Google Scholar 

  10. Nishikimi M, Ogasawara K, Kameshita I, Taniguchi T, Shizuta Y (1982) Poly(ADP-ribose) synthetase. The DNA binding domain and the automodification domain. J Biol Chem 257(11):6102–6105

    Article  CAS  PubMed  Google Scholar 

  11. Hayaishi O, Ueda K (1977) Poly(ADP-ribose) and ADP-ribosylation of proteins. Annu Rev Biochem 46:95–116

    Article  CAS  PubMed  Google Scholar 

  12. Purnell MR, Whish WJ (1980) Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J 185(3):775–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malyuchenko NV, Kotova EY, Kulaeva OI, Kirpichnikov MP, Studitskiy VM (2015) PARP1 inhibitors: antitumor drug design. Vol. 7. Acta Nat 7:27–37

    Article  CAS  Google Scholar 

  14. Faraoni I, Graziani G (2018) Role of BRCA mutations in cancer treatment with poly(ADP-ribose) polymerase (PARP) inhibitors. Cancers. 10(12):10120487

    Article  CAS  Google Scholar 

  15. Pan Z, Xie X (2017) BRCA mutations in the manifestation and treatment of ovarian cancer. Oncotarget. 8(57):97657–97670

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clark DE (2006) What has computer-aided molecular design ever done for drug discovery? Expert Opin Drug Discovery 1:103–110

    Article  CAS  Google Scholar 

  17. Chao WR, Yean D, Amin K, Green C, Jong L (2007) Computer-aided rational drug design: a novel agent (SR13668) designed to mimic the unique anticancer mechanisms of dietary indole-3-carbinol to block Akt signaling. J Med Chem 50(15):3412–3415

    Article  CAS  PubMed  Google Scholar 

  18. Talele T, Khedkar S, Rigby A (2010) Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem 10(1):127–141

    Article  CAS  PubMed  Google Scholar 

  19. Karthick V, Nagasundaram N, Doss CGP, Chakraborty C, Siva R, Lu A, Zhang G, Zhu H (2016) Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus. Infect Dis Poverty 5:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tran N, Van T, Nguyen H, Le L (2015) Identification of novel compounds against an R294K substitution of influenza A (H7N9) virus using ensemble based drug virtual screening. Int J Med Sci 12(2):163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dearden JC (2016) The history and development of quantitative structure-activity relationships (QSARs). IJQSPR 1(1):1–44. https://doi.org/10.4018/IJQSPR.2016010101

  22. Crum-Brown A, Fraser TR (1868) On the connection between chemical constitution and physiological action. Part I. On the physiological action of the salts of the ammonium bases, derived from strychnine, brucia, thebaia, codeia, morphia, and nicotia. J Anat Physiol 2:224–242

    Google Scholar 

  23. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178–180

    Article  CAS  Google Scholar 

  24. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design-a review. Curr Top Med Chem 10(1):95–115

    Article  CAS  PubMed  Google Scholar 

  25. Gramatica P (2020) Principles of QSAR modeling: comments and suggestions from personal experience. IJQSPR 5(3):1–37. https://doi.org/10.4018/IJQSPR.20200701.oa1

    Article  Google Scholar 

  26. Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic Press, Elsevier

  27. Jasuja H, Chadha N, Singh PK, Kaur M, Bahia MS, Silakari O (2018) Putative dual inhibitors of Janus kinase 1 and 3 (JAK1/3): pharmacophore based hierarchical virtual screening. Comput Biol Chem 76:109–117

  28. Peddi SR, Sivan SK, Manga V (2018) Discovery and design of new PI3K inhibitors through pharmacophore-based virtual screening, molecular docking, and binding free energy analysis. Struct Chem 29(6):1753–1766

  29. Chen X, Huan X, Liu Q, Wang Y, He Q, Tan C, Chen Y, Ding J, Xu Y, Miao Z, Yang C (2018) Design and synthesis of 2-(4,5,6,7-tetrahydrothienopyridin-2-yl)-benzoimidazole carboxamides as novel orally efficacious Poly(ADP-ribose)polymerase (PARP) inhibitors. Eur J Med Chem 145:389–403

    Article  CAS  PubMed  Google Scholar 

  30. Chen W, Guo N, Qi M, Dai H, Hong M, Guan L, Huan X, Song S, He J, Wang Y, Xi Y, Yang X, Shen Y, Su Y, Sun Y, Gao Y, Chen Y, Ding J, Tang Y, Ren G, Miao Z, Li J (2017) Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy. Eur J Med Chem 138:514–531

    Article  CAS  PubMed  Google Scholar 

  31. Fatima S, Bathini R, Sivan SK, Manga V (2012) Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1. J Recept Signal Transduct Res 32(4):214–224

    Article  CAS  PubMed  Google Scholar 

  32. (2010) Schrödinger LLC, New York, NY, PHASE, Version 3.0

  33. (2010) Schrödinger L. Maestro, version 9.1. New York, NY

  34. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20(10–11):647–671

    Article  CAS  PubMed  Google Scholar 

  35. Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67:370–372

    Article  CAS  PubMed  Google Scholar 

  36. Jorgensen WL, Tirado-Rives J (1988) The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110(6):1657–1666

    Article  CAS  PubMed  Google Scholar 

  37. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  38. Watts KS, Dalal P, Murphy RB, Sherman W, Friesner RA, Shelley JC (2010) ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50(4):534–546

    Article  CAS  PubMed  Google Scholar 

  39. Mervin LH, Afzal AM, Drakakis G, Lewis R, Engkvist O, Bender A (2015) Target prediction utilising negative bioactivity data covering large chemical space. J Cheminform 7(1):51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vangala R, Sivan SK, Peddi SR, Manga V (2020) Computational design, synthesis and evaluation of new sulphonamide derivatives targeting HIV-1 gp120. J Comput Aided Mol Des 34(1):39–54

    Article  CAS  PubMed  Google Scholar 

  41. Hajjo R, Grulke CM, Golbraikh A, Setola V, Huang XP, Roth BL, Tropsha A (2010) Development, validation, and use of quantitative structure-activity relationship models of 5-hydroxytryptamine (2B) receptor ligands to identify novel receptor binders and putative valvulopathic compounds among common drugs. J Med Chem 53(21):7573–7586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234

  43. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Huan X, Song S, He J, Wang Y, Xi Y, Yang X, Shen Y, Su Y, Sun Y, Gao Y, Chen Y, Ding J, Tang Y, Ren G, Miao Z, Li J (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and Assessment of Docking Accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  PubMed  Google Scholar 

  44. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment Factors in Database Screening. J Med Chem 47(7):1750–1759

    Article  CAS  PubMed  Google Scholar 

  45. Sivan SK, Manga V (2010) (2010) Molecular docking and 3D-QSAR studies on triazolinone and pyridazinone, non-nucleoside inhibitor of HIV-1 reverse transcriptase. J Mol Model 16(6):1169–1178

    Article  CAS  PubMed  Google Scholar 

  46. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196

    Article  CAS  PubMed  Google Scholar 

  47. Pándy-Szekeres G, Munk C, Tsonkov TM, Mordalski S, Harpsøe K, Hauser AS, Bojarski AJ, Gloriam DE (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46(D1):D440–D446

    Article  PubMed  CAS  Google Scholar 

  48. Teli M, Rajanikant GK (2012) Pharmacophore generation and atom-based 3D-QSAR of N-iso-propyl pyrrole-based derivatives as HMG-CoA reductase inhibitors. Org Med Chem Lett 2(1):25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Broccatelli F, Brown N (2014) Best of both worlds: on the complementarity of ligand-based and structure-based virtual screening. J Chem Inf Model 54(6):1634–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaushik AC, Kumar S, Wei DQ, Sahi S (2018) Structure based virtual screening studies to identify novel potential compounds for GPR142 and their relative dynamic analysis for study of type 2 diabetes. Front Chem 6:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Genet 55(2):351–367

    Article  CAS  PubMed  Google Scholar 

  52. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mahipal, Prakash Tanwar O, Karthikeyan C, Moorthy NSHN, Trivedi P (2010) 3D QSAR of aminophenyl benzamide derivatives as histone deacetylase inhibitors. Med Chem 6(5):277–285

    Article  CAS  PubMed  Google Scholar 

  54. Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152:18–33

    Article  CAS  Google Scholar 

  55. Gadaleta D, Mangiatordi GF, Catto M, Carotti A, Nicolotti O (2016) Applicability domain for QSAR models: where theory meets reality. IJQSPR 1(1):45–63

    Google Scholar 

  56. Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29

    Article  CAS  Google Scholar 

  57. Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha A (2006) A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J Chem Inf Model 46:1984–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaur M, Kumari A, Bahia MS, Silakari O (2013) Designing of new multi-targeted inhibitors of spleen tyrosine kinase (Syk) and zeta-associated protein of 70 kDa (ZAP-70) using hierarchical virtual screening protocol. J Mol Graph Model 39:165–175

    Article  CAS  PubMed  Google Scholar 

  59. Halder AK, Saha A, Saha KD, Jha (2015) Stepwise development of structure-activity relationship of diverse PARP-1 inhibitors through comparative and validated in silico modeling techniques and molecular dynamics simulation. J Biomol Struct Dyn 33(8):1756–1177

    Article  CAS  PubMed  Google Scholar 

  60. Chadha N, Silakari O (2016) Active site fingerprinting and pharmacophore screening strategies for the identification of dual inhibitors of protein kinase C (ΡΚCβ) and poly (ADP-ribose) polymerase-1 (PARP-1). Mol Divers 20(3):747–761

    Article  CAS  PubMed  Google Scholar 

  61. Zhou Y, Tang S, Chen T, Niu MM (2019) Structure-based pharmacophore modeling, virtual screening, molecular docking and biological evaluation for identification of potential poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors. Molecules. 24(23):4258. https://doi.org/10.3390/molecules24234258

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors also acknowledge the Principal and Head, Department of Chemistry, Nizam College, University College of Science, Osmania University, Hyderabad, for providing facilities to carry out this work.

Availability of data and material

No data.

Code availability

No.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Potlapally Sarita Rajender.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3931 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revathi, P., Kanth, S.S., Gururaj, S. et al. Understanding structural characteristics of PARP-1 inhibitors through combined 3D-QSAR and molecular docking studies and discovery of new inhibitors by multistage virtual screening. Struct Chem 32, 2035–2050 (2021). https://doi.org/10.1007/s11224-021-01765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01765-3

Keywords

Navigation