Skip to main content
Log in

Another look at the structure of the (H2O)n•־ system: water anion vs. hydrated electron

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical computations using both density functional theory and coupled-cluster theory methods, in conjunction with a polarizable continuum model for treatment of structures in solution, were carried out on a series of small water anions [(H2O)n]•־, n = 2, 3, 4, 5, and 16. Location of the excess electron was probed from a partition of electron densities using ELF and AIM techniques. For each size n of the [(H2O)n]•־ system, two distinct structural motifs are identified: a classical water radical anion formed by hydrogen bonds and a hydrated electron in which the excess electron is directly interacting with H atoms. Both motifs have comparable energy content and likely coexist in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Simons J, Jordan KD (1987). Chem Rev 87:835

    Article  Google Scholar 

  2. Neumark DM (2008). Mol Phys 106:2183

    Article  CAS  Google Scholar 

  3. Hart EJ, Boag JW (1962). J Am Chem Soc 84:4090

    Article  CAS  Google Scholar 

  4. Hart EJ, Anbar M (1970) The hydrated electron. Wiley Interscience, New York

  5. Walker DC (1966). Quart Rev 20:77

    Google Scholar 

  6. Feng DF, Keven L (1980). Chem Rev 80:1

    Article  CAS  Google Scholar 

  7. Rossky PJ, Schitker J (1988). J Phys Chem 92:4277

    Article  CAS  Google Scholar 

  8. Barnett RN, Landman U, Scharf D, Jortner J (1989). Acc Chem Res 22:350

    Article  CAS  Google Scholar 

  9. Garrett BC, Dixon DA, Camaioni DM, Chipman DM, Johnson MA, Jonah CD, Kimmel GA, Miller JH, Rescigno TN, Rossky TN (2005). Chem Rev 105:355

    Article  CAS  PubMed  Google Scholar 

  10. Sommerfeld T, DeFusco A, Jordan KN (2008). J Phys Chem A 112:11021

    Article  CAS  PubMed  Google Scholar 

  11. Ehrler OT, Neumark DN (2009). Acc Chem Res 42:769

    Article  CAS  PubMed  Google Scholar 

  12. Marsalek O, Uhlig F, Vandevondele J, Jungwirth P (2012). Acc Chem Res 45:23

    Article  CAS  PubMed  Google Scholar 

  13. Turi L, Rossky PJ (2012). Chem Rev 112:5641

    Article  CAS  PubMed  Google Scholar 

  14. Herbert JM (2019). Phys Chem Chem Phys 21:20538

    Article  CAS  PubMed  Google Scholar 

  15. Arnold ST, Eaton JG, Sarkas HW, Bowen KH (1989) In: Maier JP (ed) Ion and Cluster Ion Spectroscopy and Structure. Elsevier, Amsterdam, p 417

    Google Scholar 

  16. Suh SB, Lee HM, Kim J, Lee JY, Kim KS (2000). J Chem Phys 113:5273

    Article  CAS  Google Scholar 

  17. Coe JV (2006). J Chem Phys 125:014315

    Article  PubMed  Google Scholar 

  18. Bailey CG, Kim J, Johnson MA (1996). J Phys Chem 100:16782

    Article  CAS  Google Scholar 

  19. Hammer NI, Rosciolli JR, Johnson MA (2005). J Phys Chem A 109:7896

    Article  CAS  PubMed  Google Scholar 

  20. Jou FY, Freeman GR (1979). J Phys Chem 83:2383

    Article  CAS  Google Scholar 

  21. Marbach W, Asaad AN, Krebs P (1999). J Phys Chem A 103:28

    Article  CAS  Google Scholar 

  22. Hertwig A, Hippler H, Unterreiner A (1999). Phys Chem Chem Phys 1:5633

    Article  CAS  Google Scholar 

  23. Herburger A, Barwa E, Oncak M, Heller J, van der Linde C, Neumark DM, Beyer MK (2019). J Am Chem Soc 141:18000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han ML, Seung BS, Tarakeshwar P, Kwang SK (2005). J Chem Phys 122:044309

    Article  Google Scholar 

  25. Kwang SK, Sik L, Jongseob K, Jin YL (1997). J Am Chem Soc 119:9329

    Article  Google Scholar 

  26. Kumar A, Walker JA, Bartels DM, Sevilla MD (2015). J Phys Chem A 119:9148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Herbert JM, Jacobson LD (2011). J Phys Chem A 115:14470

    Article  CAS  PubMed  Google Scholar 

  28. Larsen ER, Glover JW, Schwartz JB (2010). Science 329:65

    Article  CAS  PubMed  Google Scholar 

  29. Turi L, Madarász A (2011). Science 331:1387

    Article  PubMed  Google Scholar 

  30. Jacobson DL, Herbert MJ (2011). Science 331:1387-d

    Article  Google Scholar 

  31. Larsen ER, Glover JW, Schwartz JB (2011). Science 331:1387-e

    Article  Google Scholar 

  32. Natori M, Watanabe T (1966). J Phys Soc Jpn 21:1573

    Article  CAS  Google Scholar 

  33. Newton MD (1975). J Phys Chem 79:2795

    Article  CAS  Google Scholar 

  34. Shkrob IA (2007). J Phys Chem A 111:5223

    Article  CAS  PubMed  Google Scholar 

  35. Sonntag CV (1987) The Chemical Basis of Radiation Biology. Taylor and Francis, London

    Google Scholar 

  36. Marin TW, Jonah CD, Bartels DM (2005). J Phys Chem A 109:1843 and references therein

    Article  CAS  PubMed  Google Scholar 

  37. Renault JP, Vuilleumier R, Pommeret S (2008). J Phys Chem A 112:7027

    Article  CAS  PubMed  Google Scholar 

  38. Huyen TL, Duong LV, Nguyen MT, Lin MC (2019). Int J Chem Kinet 51:610

    Article  CAS  Google Scholar 

  39. Huyen TL, Pham VT, Nguyen MT, Lin MC (2019). Chem Phys Lett 731:136604

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M et al. Gaussian 09 (2009) Revision E.01, Gaussian Inc., Wallingford, CT.

  41. McNeill AS, Zhan C, Appel AM, Stanbury DM, Dixon DA (2020). J Phys Chem A 124:6408

    Google Scholar 

  42. Miertus S, Scrocco E, Tomasi T (1981). J Chem Phys 55:117

    CAS  Google Scholar 

  43. Silvi B, Savin A (1994). Nature 371:683

    Article  CAS  Google Scholar 

  44. Bader WJF (1991). Chem Rev 91:893

    Article  CAS  Google Scholar 

  45. Chipman DM (1978). J Phys Chem 82:1080

    Article  CAS  Google Scholar 

  46. Hammer NI, Roscioli JR, Johnson MA, Myshakin EM, Jordan KD (2005). J Phys Chem A 109:11526

    Article  CAS  PubMed  Google Scholar 

  47. Hammer NI, Shin JW, Headrick JM, Diken EG, Roscioli JA, Weddle GH, Johnson MA (2004). Science 306:675

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen MT, Raspoet G, Vanquickenborne LG, Van Duijnen PJ (1997). J Phys Chem A 101:7379

    Article  CAS  Google Scholar 

  49. Nguyen MT, Matus MH, Jackson VE, Ngan VT, Rustad JR, Dixon DA (2008). J Phys Chem A 112:10386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MTN is grateful to Prof. Andreas Savin at Universite Sorbonne Paris for valuable discussion on the ELF computation in solution.

Funding

TLH and MTN thank Ton Duc Thang University (Demasted) for support. JL and DM acknowledge the support of NSF-CREST (Award No. 154774).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and calculations design. TLH and LVD carried out quantum chemical computations and data collection. The first draft of the manuscript was written by MTN and edited by DM and JL, and all authors commented on the analyses and the text.

Corresponding author

Correspondence to Minh Tho Nguyen.

Ethics declarations

Consent

All authors read and approved the content of the final manuscript, and all gave explicit consent to submit.

Conflict of interest

The authors declare no competing interests.

Research involving human participants and/or animals

Not Applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Figures display and Tables list Cartesian coordinates of, the optimized structures of various anionic water oligomers.

ESM 1

(PDF 629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Huyen, T., Van Duong, L., Majumdar, D. et al. Another look at the structure of the (H2O)n•־ system: water anion vs. hydrated electron. Struct Chem 32, 655–665 (2021). https://doi.org/10.1007/s11224-021-01749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01749-3

Keywords

Navigation