Abstract
Quantum chemical computations using both density functional theory and coupled-cluster theory methods, in conjunction with a polarizable continuum model for treatment of structures in solution, were carried out on a series of small water anions [(H2O)n]•־, n = 2, 3, 4, 5, and 16. Location of the excess electron was probed from a partition of electron densities using ELF and AIM techniques. For each size n of the [(H2O)n]•־ system, two distinct structural motifs are identified: a classical water radical anion formed by hydrogen bonds and a hydrated electron in which the excess electron is directly interacting with H atoms. Both motifs have comparable energy content and likely coexist in aqueous solution.
Similar content being viewed by others
References
Simons J, Jordan KD (1987). Chem Rev 87:835
Neumark DM (2008). Mol Phys 106:2183
Hart EJ, Boag JW (1962). J Am Chem Soc 84:4090
Hart EJ, Anbar M (1970) The hydrated electron. Wiley Interscience, New York
Walker DC (1966). Quart Rev 20:77
Feng DF, Keven L (1980). Chem Rev 80:1
Rossky PJ, Schitker J (1988). J Phys Chem 92:4277
Barnett RN, Landman U, Scharf D, Jortner J (1989). Acc Chem Res 22:350
Garrett BC, Dixon DA, Camaioni DM, Chipman DM, Johnson MA, Jonah CD, Kimmel GA, Miller JH, Rescigno TN, Rossky TN (2005). Chem Rev 105:355
Sommerfeld T, DeFusco A, Jordan KN (2008). J Phys Chem A 112:11021
Ehrler OT, Neumark DN (2009). Acc Chem Res 42:769
Marsalek O, Uhlig F, Vandevondele J, Jungwirth P (2012). Acc Chem Res 45:23
Turi L, Rossky PJ (2012). Chem Rev 112:5641
Herbert JM (2019). Phys Chem Chem Phys 21:20538
Arnold ST, Eaton JG, Sarkas HW, Bowen KH (1989) In: Maier JP (ed) Ion and Cluster Ion Spectroscopy and Structure. Elsevier, Amsterdam, p 417
Suh SB, Lee HM, Kim J, Lee JY, Kim KS (2000). J Chem Phys 113:5273
Coe JV (2006). J Chem Phys 125:014315
Bailey CG, Kim J, Johnson MA (1996). J Phys Chem 100:16782
Hammer NI, Rosciolli JR, Johnson MA (2005). J Phys Chem A 109:7896
Jou FY, Freeman GR (1979). J Phys Chem 83:2383
Marbach W, Asaad AN, Krebs P (1999). J Phys Chem A 103:28
Hertwig A, Hippler H, Unterreiner A (1999). Phys Chem Chem Phys 1:5633
Herburger A, Barwa E, Oncak M, Heller J, van der Linde C, Neumark DM, Beyer MK (2019). J Am Chem Soc 141:18000
Han ML, Seung BS, Tarakeshwar P, Kwang SK (2005). J Chem Phys 122:044309
Kwang SK, Sik L, Jongseob K, Jin YL (1997). J Am Chem Soc 119:9329
Kumar A, Walker JA, Bartels DM, Sevilla MD (2015). J Phys Chem A 119:9148
Herbert JM, Jacobson LD (2011). J Phys Chem A 115:14470
Larsen ER, Glover JW, Schwartz JB (2010). Science 329:65
Turi L, Madarász A (2011). Science 331:1387
Jacobson DL, Herbert MJ (2011). Science 331:1387-d
Larsen ER, Glover JW, Schwartz JB (2011). Science 331:1387-e
Natori M, Watanabe T (1966). J Phys Soc Jpn 21:1573
Newton MD (1975). J Phys Chem 79:2795
Shkrob IA (2007). J Phys Chem A 111:5223
Sonntag CV (1987) The Chemical Basis of Radiation Biology. Taylor and Francis, London
Marin TW, Jonah CD, Bartels DM (2005). J Phys Chem A 109:1843 and references therein
Renault JP, Vuilleumier R, Pommeret S (2008). J Phys Chem A 112:7027
Huyen TL, Duong LV, Nguyen MT, Lin MC (2019). Int J Chem Kinet 51:610
Huyen TL, Pham VT, Nguyen MT, Lin MC (2019). Chem Phys Lett 731:136604
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M et al. Gaussian 09 (2009) Revision E.01, Gaussian Inc., Wallingford, CT.
McNeill AS, Zhan C, Appel AM, Stanbury DM, Dixon DA (2020). J Phys Chem A 124:6408
Miertus S, Scrocco E, Tomasi T (1981). J Chem Phys 55:117
Silvi B, Savin A (1994). Nature 371:683
Bader WJF (1991). Chem Rev 91:893
Chipman DM (1978). J Phys Chem 82:1080
Hammer NI, Roscioli JR, Johnson MA, Myshakin EM, Jordan KD (2005). J Phys Chem A 109:11526
Hammer NI, Shin JW, Headrick JM, Diken EG, Roscioli JA, Weddle GH, Johnson MA (2004). Science 306:675
Nguyen MT, Raspoet G, Vanquickenborne LG, Van Duijnen PJ (1997). J Phys Chem A 101:7379
Nguyen MT, Matus MH, Jackson VE, Ngan VT, Rustad JR, Dixon DA (2008). J Phys Chem A 112:10386
Acknowledgments
MTN is grateful to Prof. Andreas Savin at Universite Sorbonne Paris for valuable discussion on the ELF computation in solution.
Funding
TLH and MTN thank Ton Duc Thang University (Demasted) for support. JL and DM acknowledge the support of NSF-CREST (Award No. 154774).
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and calculations design. TLH and LVD carried out quantum chemical computations and data collection. The first draft of the manuscript was written by MTN and edited by DM and JL, and all authors commented on the analyses and the text.
Corresponding author
Ethics declarations
Consent
All authors read and approved the content of the final manuscript, and all gave explicit consent to submit.
Conflict of interest
The authors declare no competing interests.
Research involving human participants and/or animals
Not Applicable
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Figures display and Tables list Cartesian coordinates of, the optimized structures of various anionic water oligomers.
ESM 1
(PDF 629 kb)
Rights and permissions
About this article
Cite this article
Le Huyen, T., Van Duong, L., Majumdar, D. et al. Another look at the structure of the (H2O)n•־ system: water anion vs. hydrated electron. Struct Chem 32, 655–665 (2021). https://doi.org/10.1007/s11224-021-01749-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11224-021-01749-3