Skip to main content

Advertisement

Log in

New D2R partial agonist candidates: an in silico approach from statistical models, molecular docking, and ADME/Tox properties

Structural Chemistry Aims and scope Submit manuscript

Abstract

Schizophrenia is a psychiatric disorder that affects 20 million people worldwide and the mortality rate is two or three times higher than the average overall population mainly due to high frequency of suicide and other associated comorbidities. The therapeutic approaches used for its treatment, besides do not combat this illness, trigger several side effects, being imperative the development of new medical countermeasures. In the search for new agents, we constructed a statistical model (model A) with a series of aripiprazole-derived using the partial least squares technique, and posteriorly we applied several validation tests to guarantee consistency of model A and its forecasting ability. In addition, molecular docking simulations were employed to extract important information on structural elements involved in the molecular recognition process from receptor-ligand complex. We designed new compounds whose biological activity values were predicted by our model. Among new designed molecules, we highlight compounds 2, 5, 9, and 11 with predicted pKi values over 8.5. We underline that the presence of ester moieties attached to the aromatic ring from region A is well tolerated in this position and contributes to increase the pKi values; otherwise it is essential that there are no bulky groups in region C. Finally, ADME/Tox properties evaluated via in silico approach for the proposed compounds shed light on their drug-likeness characteristics, indicating that they could be a reliable starting point as potent candidates to further experimental exploration (chemical synthesis, in vitro and in vivo analyses).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Chart 1
Chart 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Chart 3

Similar content being viewed by others

Availability of data and material

Data included in Supplementary material.

Code availability

No applicable

References

  1. James SL et al (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392:1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7

    Article  Google Scholar 

  2. Guloksuz S, van Os J (2018) The slow death of the concept of schizophrenia and the painful birth of the psychosis spectrum. Psychol Med 48:229–244. https://doi.org/10.1017/S0033291717001775

    Article  CAS  PubMed  Google Scholar 

  3. Pardiñas AF, Holmans P, Pocklington AJ et al (2018) Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet 50:381–389. https://doi.org/10.1038/s41588-018-0059-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Os J, Kenis G, Rutten BPF (2010) The environment and schizophrenia. Nature 468:203–212. https://doi.org/10.1038/nature09563

    Article  CAS  PubMed  Google Scholar 

  5. Johnson DS, Choi C, Fay LK et al (2011) Discovery of PF-00217830: aryl piperazine napthyridinones as D2 partial agonists for schizophrenia and bipolar disorder. Bioorg Med Chem Lett 21:2621–2625. https://doi.org/10.1016/j.bmcl.2011.01.059

    Article  CAS  PubMed  Google Scholar 

  6. von Hausswolff-Juhlin Y, Bjartveit M, Lindström E, Jones P (2009) Schizophrenia and physical health problems. Acta Psychiatr Scand 119:15–21. https://doi.org/10.1111/j.1600-0447.2008.01309.x

    Article  Google Scholar 

  7. Tran E, Rouillon F, Loze JY et al (2009) Cancer mortality in patients with schizophrenia: an 11-year prospective cohort study. Cancer 115. https://doi.org/10.1002/cncr.24383

  8. Townsend LA, Malla AK, Norman RM (2001) Cognitive functioning in stabilized first-episode psychosis patients. Psychiatry Res 104:119–131. https://doi.org/10.1016/S0165-1781(01)00302-X

    Article  CAS  PubMed  Google Scholar 

  9. Rössler W, Joachim Salize H, van Os J, Riecher-Rössler A (2005) Size of burden of schizophrenia and psychotic disorders. Eur Neuropsychopharmacol 15:399–409. https://doi.org/10.1016/j.euroneuro.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  10. Roshanaei-Moghaddam B, Katon W (2009) Premature mortality from general medical illnesses among persons with bipolar disorder: a review. Psychiatr Serv 60:147–156. https://doi.org/10.1176/ps.2009.60.2.147

    Article  PubMed  Google Scholar 

  11. Marder SR, Essock SM, Miller AL et al (2004) Physical health monitoring of patients with schizophrenia. Am J Psychiatry 161:1334–1349. https://doi.org/10.1176/appi.ajp.161.8.1334

    Article  PubMed  Google Scholar 

  12. Leucht S, Burkard T, Henderson J et al (2007) Physical illness and schizophrenia: a review of the literature. Acta Psychiatr Scand 116:317–333. https://doi.org/10.1111/j.1600-0447.2007.01095.x

    Article  CAS  PubMed  Google Scholar 

  13. Laursen TM, Munk-Olsen T, Nordentoft M, Mortensen PB (2007) Increased mortality among patients admitted with major psychiatric disorders: a register-based study comparing mortality in unipolar depressive disorder, bipolar affective disorder, schizoaffective disorder, and schizophrenia. J Clin Psychiatry 68:. https://doi.org/10.4088/JCP.v68n0612

  14. De Hert M, Dekker JM, Wood D et al (2009) Cardiovascular disease and diabetes in people with severe mental illness position statement from the European psychiatric association (EPA), supported by the European Association for the Study of diabetes (EASD) and the European Society of Cardiology (ESC). Eur Psychiatry 24:412–424. https://doi.org/10.1016/j.eurpsy.2009.01.005

    Article  PubMed  Google Scholar 

  15. Brown S, Kim M, Mitchell C, Inskip H (2010) Twenty-five year mortality of a community cohort with schizophrenia. Br J Psychiatry 196:116–121. https://doi.org/10.1192/bjp.bp.109.067512

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brown S, Inskip H, Barraclough B (2000) Causes of the excess mortality of schizophrenia. Br J Psychiatry 177. https://doi.org/10.1192/bjp.177.3.212

  17. Beyer J, Kuchibhatla M, Gersing K, Krishnan KRR (2005) Medical comorbidity in a bipolar outpatient clinical population. Neuropsychopharmacology 30:401–404. https://doi.org/10.1038/sj.npp.1300608

    Article  PubMed  Google Scholar 

  18. Suzuki K, Kimura H (2018) TAK-063, a novel PDE10A inhibitor with balanced activation of direct and indirect pathways, provides a unique opportunity for the treatment of schizophrenia. CNS Neurosci Ther 24:604–614. https://doi.org/10.1111/cns.12798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sahakyan L, Kwapil TR (2018) Episodic memory retrieval is impaired in negative schizotypy under fast response deadline. Schizophr Res 201:167–171. https://doi.org/10.1016/j.schres.2018.05.039

    Article  PubMed  Google Scholar 

  20. Kurtz MM (2006) Symptoms versus neurocognitive skills as correlates of everyday functioning in severe mental illness. Expert Rev Neurother 6:47–56. https://doi.org/10.1586/14737175.6.1.47

    Article  PubMed  Google Scholar 

  21. Dienel SJ, Lewis DA (2019) Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol Dis 131:104208. https://doi.org/10.1016/j.nbd.2018.06.020

    Article  PubMed  Google Scholar 

  22. Meltzer HY, Huang M (2008) In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. Prog Brain Res 172

  23. Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359. https://doi.org/10.1038/nrd1346

    Article  CAS  PubMed  Google Scholar 

  24. Kondej M, Stępnicki P, Kaczor AA (2018) Multi-target approach for drug discovery against schizophrenia. Int J Mol Sci 19:3105. https://doi.org/10.3390/ijms19103105

    Article  CAS  PubMed Central  Google Scholar 

  25. Shapiro DA, Renock S, Arrington E et al (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411. https://doi.org/10.1038/sj.npp.1300203

    Article  CAS  PubMed  Google Scholar 

  26. Kikuchi T, Tottori K, Uwahodo Y et al (1995) 7-(4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1H)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 274:329

    CAS  PubMed  Google Scholar 

  27. Burris KD, Molski TF, Xu C et al (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302:381–389. https://doi.org/10.1124/jpet.102.033175

    Article  CAS  PubMed  Google Scholar 

  28. Lawler CP, Prioleau C, Lewis MM et al (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20. https://doi.org/10.1016/S0893-133X(98)00099-2

  29. Jordan S, Koprivica V, Chen R et al (2002) The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 441:137–140. https://doi.org/10.1016/S0014-2999(02)01532-7

    Article  CAS  PubMed  Google Scholar 

  30. Stip E, Tourjman V (2010) Aripiprazole in schizophrenia and schizoaffective disorder: a review. Clin Ther 32:S3–S20. https://doi.org/10.1016/j.clinthera.2010.01.021

    Article  CAS  PubMed  Google Scholar 

  31. Zajdel P, Marciniec K, Maślankiewicz A et al (2013) Antidepressant and antipsychotic activity of new quinoline- and isoquinoline-sulfonamide analogs of aripiprazole targeting serotonin 5-HT1A/5-HT2A/5-HT7 and dopamine D2/D3 receptors. Eur J Med Chem 60:42–50. https://doi.org/10.1016/j.ejmech.2012.11.042

    Article  CAS  PubMed  Google Scholar 

  32. Shahlaei M (2013) Descriptor selection methods in quantitative structure–activity relationship studies: a review study. Chem Rev 113:8093–8103. https://doi.org/10.1021/cr3004339

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Sassano MF, Zheng L et al (2012) Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D2 receptor agonists. J Med Chem 55:7141–7153. https://doi.org/10.1021/jm300603y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB et al (2009). Gaussian:09

  35. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  36. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  37. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J Chem Phys 56:2257–2261. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  38. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222. https://doi.org/10.1007/BF00533485

    Article  CAS  Google Scholar 

  39. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods IX An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys:54. https://doi.org/10.1063/1.1674902

  40. Tetko IV, Gasteiger J, Todeschini R et al (2005) Virtual computational chemistry laboratory – design and description. J Comput Aided Mol Des 19:453–463. https://doi.org/10.1007/s10822-005-8694-y

    Article  CAS  PubMed  Google Scholar 

  41. Kiralj R, Ferreira MMC (2009) Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc 20:770–787

    Article  CAS  Google Scholar 

  42. de Oliveira DB, Gaudio AC (2000) BuildQSAR: a new computer program for QSAR analysis. Quant Struct Relationships 19:599–601. https://doi.org/10.1002/1521-3838(200012)19:6<599::AID-QSAR599>3.0.CO;2-B

    Article  Google Scholar 

  43. Infometrix Inc (2002) Pirouette 3.10

  44. Schrödinger (2018) Maestro- Schrödinger Release 2018–1

  45. Ferreira MMC (2002) Multivariate QSAR. J Braz Chem Soc 13:742–753

    CAS  Google Scholar 

  46. Martins JPA, Ferreira MMC (2013) QSAR modeling: um novo pacote computacional open source para gerar e validar modelos QSAR. Quim Nova 36:554–560. https://doi.org/10.1590/S0100-40422013000400013

    Article  CAS  Google Scholar 

  47. Bonifazi A, Yano H, Guerrero AM et al (2019) Novel and potent dopamine D 2 receptor go-protein biased agonists. ACS Pharmacol Transl Sci 2:52–65. https://doi.org/10.1021/acsptsci.8b00060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dagan-Wiener A, Nissim I, Ben Abu N et al (2017) Bitter or not? BitterPredict, a tool for predicting taste from chemical structure. Sci Rep 7:12074. https://doi.org/10.1038/s41598-017-12359-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bocci G, Carosati E, Vayer P et al (2017) ADME-space: a new tool for medicinal chemists to explore ADME properties. Sci Rep 7:6359. https://doi.org/10.1038/s41598-017-06692-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tropsha A, Gramatica P, Gombar V (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77. https://doi.org/10.1002/qsar.200390007

    Article  CAS  Google Scholar 

  51. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276. https://doi.org/10.1016/S1093-3263(01)00123-1

    Article  CAS  PubMed  Google Scholar 

  52. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488. https://doi.org/10.1002/minf.201000061

    Article  CAS  PubMed  Google Scholar 

  53. Arroio A, Honório KM, da Silva ABF (2010) Propriedades químico-quânticas empregadas em estudos das relações estrutura-atividade. Quim Nova 33:694–699. https://doi.org/10.1590/S0100-40422010000300037

    Article  CAS  Google Scholar 

  54. Honório KM, Da Silva ABF (2003) An AM1 study on the electron-donating and electron-accepting character of biomolecules. Int J Quantum Chem 95:126–132. https://doi.org/10.1002/qua.10661

    Article  CAS  Google Scholar 

  55. Wang S, Che T, Levit A et al (2018) Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 555:269–273. https://doi.org/10.1038/nature25758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) (Finance Code 001), CNPq and FAPESP (2016/24524–7, 2017/10118–0). Our research was carried out using the computational resources of the Center for Mathematical Sciences Applied to Industry (CeMEAI) funded by FAPESP (grant 2013/07375–0).

Author information

Authors and Affiliations

Authors

Contributions

Aldineia P da Silva and Laise P. A. Chiari performed the analytic calculation and discussion, Aldineia P da Silva and Laise P. A. Chiari, Amanda R. Guimarães, Kathia M. Honorio and Albérico B. F. da Silva contributed to the final version of the manuscript. Alberico B. F. da Silva supervised the project.

Corresponding author

Correspondence to Albérico B. F. da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence to work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.P., Chiari, L.P.A., Guimarães, A.R. et al. New D2R partial agonist candidates: an in silico approach from statistical models, molecular docking, and ADME/Tox properties. Struct Chem 32, 2019–2033 (2021). https://doi.org/10.1007/s11224-021-01742-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01742-w

Keywords

Navigation