Insight into the combustion mechanism of nitroglycerin/nano-aluminum composite materials


The ReaxFF-lg is used to simulate the thermal decomposition of the pure nitroglycerin (NG) and nitroglycerin/nano-Al (NG/Al) systems. The simulation results show that the decomposition pathway of NG is the rupture of C–H and O–N bonds. However, the rupture of C–O and N–O bonds of NG is the main decomposition pathway in the NG/Al system. The strong attraction Al to oxygen atoms accelerates NG decomposition. The reaction of the NG/Al system begins on the surface between NG and Al. The surface of aluminum particles is the first to be oxidized. As the temperature increases, O atoms attached to the surface of Al particles penetrate into the aluminum particles. The interior of aluminum particles gradually becomes disordered and fluffy from orderly arrangement. The interaction between O and Al constitutes the early combustion reaction of the NG/Al system, which reduces the production of O-containing intermediates. The attraction of Al to C is greater than that to N at high temperatures, which increases the yield of C-Al cluster and decrease the yield of CO2 at high temperature. The decomposition of NG/Al is an exothermic reaction without energy barrier. The decomposition of NG needs to overcome an energy barrier of 44.27 kcal/mol. Adiabatic simulation shows that the decomposition rate, heat release rate, and energy release rate of the NG/Al system are significantly higher than those of the NG system. This work presents a comprehensive insight into the interaction mechanism between nano-Al and NG.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Badgujar DM, Talawar MB, Zarko VE, Mahulikar PP (2019) Recent advances in safe synthesis of energetic materials: an overview. Combust Explo Shock 55:245–257

    Article  Google Scholar 

  2. 2.

    Shen C, Wang P, Lu M (2018) Theoretical study on benzoheterocycle based energetic materials, effect of heterocyclic-fused, conjugation, hydrogen bond, and substitutional group on the detonation performance. J Mol Model 24

  3. 3.

    Huang ZP, Liu JJ, Xu SL, Bai J, Ma XG (2010) Qualitative analysis of migration components in the interface of NEPE propellant. J Solid Rocket Technol 33:541–544

    CAS  Google Scholar 

  4. 4.

    Marshakov VN, Novozhilov VN (2011) Combustion of a propellant and its extinction upon rapid depressurization: a comparison of theory and experiment. Russ. J Phys Chem B 5:474–481

    CAS  Google Scholar 

  5. 5.

    Babar ZUD, Malik AQ (2015) Thermal decomposition, ignition and kinetic evaluation of magnesium and aluminum fuelled. Pyrotechnic Compositions 12:579–592

    CAS  Google Scholar 

  6. 6.

    Gao W, Zhang XY, Zhang DW, Peng QK, Zhang QR, Dobash I (2017) Flame propagation behaviors in nano-metal dust explosions. Powder Technol 321:154–162

    CAS  Article  Google Scholar 

  7. 7.

    Julien P, Bergthorson JM (2017) Enabling the metal fuel economy: green recycling of metal fuels. Sustain Energ Fuels 1:615–625

    CAS  Article  Google Scholar 

  8. 8.

    Kasztankiewicz A, Specjalska KG, Zygmunt A, Cieslak K, Zakoscielny B, Golofit T (2018) Application and properties of aluminum in rocket and pyrotechnics. J Elem 23:3241–3331

    Google Scholar 

  9. 9.

    Maggi F, Dossi S, Paravan C, DeLuca LT, Liljedahl M (2015) Activated aluminum powders for space propulsion. Powder Technol 270:46–52

    CAS  Article  Google Scholar 

  10. 10.

    Sun RC, Liu PA, Qi H, Liu JP, Ding T (2019) Molecular dynamic simulations of ether-coated aluminum nano-particles as a novel hydrogen source. J Nanopart Res 21:72

    Article  Google Scholar 

  11. 11.

    Ye M, Zhang S, Liu S, Han A, Chen X (2016) Preparation and characterization of pyrotechnics binder–coated nano-aluminum composite particles. J Energ Mater 35:300–313

    Article  Google Scholar 

  12. 12.

    Zhi J, Li SF, Zhao FQ, Liu ZR, Yin CM, Luo Y, Li SW (2006) Research on the combustion properties of propellants with low content of nano metal. Powders Propellants Explos Pyrotech 31:139–147

    CAS  Article  Google Scholar 

  13. 13.

    Vorozhtsov AB, Lerner M, Rodkevich N, Nie H, Abraham A, Schoenitz M, Dreizin EL (2016) Oxidation of nano-sized aluminum powders. Thermochim Acta 636:48–56

    CAS  Article  Google Scholar 

  14. 14.

    Weiser V, Kelzenberg S, Eisenreich N (2001) Influence of the metal particle size on the ignition of energetic materials. Propellants Explos Pyrotech 26:284–289

    CAS  Article  Google Scholar 

  15. 15.

    van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409

    Article  Google Scholar 

  16. 16.

    Liu L, Liu Y, Zybin SV, Sun H, Goddard WA (2011) ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. J Phys Chem A 115:11016–11022

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Li CF, Mei Z, Zhao FQ, Xu SY, Ju XH (2018) Molecular dynamic simulation for thermal decomposition of RDX with nano-AlH3 particles. Phys Chem Chem Phys 20:14192–14199

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Wu JY, Huang YX, Yang LJ, Geng DS, Wang FP, Wang HQ, Chen L (2018) Reactive molecular dynamics simulations of the thermal decomposition mechanism of 1,3,3-trinitroazetidine. ChemPhysChem 19:2683–2695

    CAS  Article  Google Scholar 

  19. 19.

    Liu H, Li QK, He YH (2013) Pyrolysis of CL-20-TNT cocrystal from ReaxFF/lg reactive molecular dynamics simulations. Acta Phys Sin 62

  20. 20.

    Mei Z, An Q, Zhao FQ, Xu SY, Ju XH (2018) Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives. Phys Chem Chem Phys 20:2934

    Article  Google Scholar 

  21. 21.

    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    CAS  Article  Google Scholar 

  22. 22.

    Acceryls Inc (2013) Material Studio 7.0. Acceryls Inc, San Diego

    Google Scholar 

  23. 23.

    Pei L, Dong K, Tang Y, Zhang B, Yu C, Li W (2017) A density functional theory study of the decomposition mechanism of nitroglycerin. J Mol Model 23:269.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Roos BD, Brill TB (2002) Thermal decomposition of energetic materials 82. Correlations of gaseous products with the composition of aliphatic nitrate esters. Combust Flame 128:181–190.

    CAS  Article  Google Scholar 

  25. 25.

    Hiyoshi RI, Brill TB (2002) Thermal decomposition of energetic materials 83. Comparison of the pyrolysis of energetic materials in air versus argon. Propellants Explos Pyrotech 27:23–30.<>1.0.CO;2-8

    CAS  Article  Google Scholar 

  26. 26.

    Yan Q, Zhu W, Chi X, Du X, Xiao H (2013) Theoretical studies on the unimolecular decomposition of nitroglycerin. J Mol Model 19:1617–1626.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO — the open visualization tool. Model Simul Mater Sci Eng 18

  28. 28.

    Waring CE, Krastins G (1970) Kinetics and mechanism of the thermal decomposition of nitroglycerin. J Phys Chem 74:999–1006.

    CAS  Article  Google Scholar 

  29. 29.

    Fiamengo I, Muhamed S, Sinjar MM (2010) Determination of nitroglycerine content in double base propellants by isothermal thermogravimetry. Cent Eur J Energ Mater 7:3–19

    CAS  Google Scholar 

  30. 30.

    Wang Y, Wang B, Li W (2017) Theoretical investigation on the adsorption of nitroglycerin on the α-Al2O3(0001) and γ-Al2O3(110) surfaces. Chem J Chin Univ.

Download references


Y Zhao gratefully thanks the Postgraduate Innovation Project of Jiangsu Province for partial financial support.

Author information



Corresponding author

Correspondence to Xue-Hai Ju.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 81 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Mei, Z., Zhao, F. et al. Insight into the combustion mechanism of nitroglycerin/nano-aluminum composite materials. Struct Chem (2020).

Download citation


  • ReaxFF-lg
  • Nitroglycerin/nano-Al
  • Decomposition pathway
  • Aluminum-containing clusters
  • Adiabatic simulation