Skip to main content
Log in

Structural, electronic, and optical properties of some new dithienosilole derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Structural, electronic, and optical properties of a series of organic semiconductors based on dithienosilole (DTS) and its derivatives were theoretically studied using density functional theory (DFT) and time-dependent-DFT (TD-DFT) methods. Our calculated results suggest that two phenyl groups substituted at silicon atom, as well as functional groups at 1,1′-positions, are an efficient way to induce substantial changes in the optical and electronic properties of DTS compounds. By substituting the functional groups at 1,1′-positions of DTS dimeric compound, we successfully make changes in the charge transport rate of the designed compounds, especially a remarkable reduction in hole reorganization energies. Introduction of pyridyl groups is efficient to lower the LUMO level, and optical band gap energies, to increase the charge and the balance transport rate between hole and electron for producing the ambipolar transport materials promising for use not only in the OLED but also in DSSC devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.T. Nguyen, J.C. Jiang, M.T. Nguyen, A theoretical design of some silole-based dibenzothiophene-S,S-dioxide, semiconducting compounds for red phosphorescence, Organ Electron 54 (2018) 270–276. https://doi.org/10.1016/j.orgel.2017.12.051

  2. Wu J, Wu S, Geng Y, Yang G, Muhammad S, Jin J, Liao Y, Su Z (2010) Theoretical study on dithieno[3,2-b:20,30-d]phosphole derivatives: high-efficiency blue-emitting materials with ambipolar semiconductor behavior. Theor Chem Accounts 127:419–427. https://doi.org/10.1007/s00214-010-0730-x

    Article  CAS  Google Scholar 

  3. Wang C, Dong H, Jiang L, Hu W (2018) Organic semiconductor crystals Chem. Soc Rev 47:422. https://doi.org/10.1039/c7cs00490g

    Article  CAS  Google Scholar 

  4. Lee KH, Ohshita J, Kunai A (2004) Synthesis and properties of bis(methylthio)dithienosilole and its oxides. Organometallics 23:5481–5487. https://doi.org/10.1021/om049642b

    Article  CAS  Google Scholar 

  5. Nguyen HT, Huong VTT, Nguyen MT (2012) Silole-based oligomers as electron transport materials. Chem Phys Lett 22:33–40. https://doi.org/10.1016/j.cplett.2012.08.051

    Article  CAS  Google Scholar 

  6. Venuvanalingam P (2012) Designing benzosiloles for better optoelectronic properties using DFT and TDDFT approaches. Phys Chem Chem Phys 14:14229–14237. https://doi.org/10.1039/C2CP41554B

    Article  PubMed  Google Scholar 

  7. Baumgartner T (2005) π-Conjugated heterocyclic fused bithiophene materials. J. Inorg. Organomet. Polym. Mater. 15:389–409. https://doi.org/10.1007/s10904-006-9013-3

    Article  CAS  Google Scholar 

  8. Kim DH, Ohshita J, Lee KH, Kunugi Y, Kunai A (2006) Synthesis of π-conjugated oligomers containing dithienosilole units. Organometallics 25:1511–1516. https://doi.org/10.1021/om0510122

    Article  CAS  Google Scholar 

  9. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, . Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 Revision D.01, 2009, Gaussian Inc. Wallingford CT

  10. Sun F, Jin R (2017) DFT and TD-DFT study on the optical and electronic properties of derivatives of 1,4-bis(2-substituted-1,3,4-oxadiazole)benzene. Arab J Chem 10:S2988–S2993. https://doi.org/10.1016/j.arabjc.2013.11.037

    Article  CAS  Google Scholar 

  11. Ohshita J, Nodono M, Watanabe T, Ueno Y, Kunai A, Harima Y, Yamashita K, Ishikawa M (1998) Synthesis and properties of dithienosilole. J Organomet Chem 553:487–491. https://doi.org/10.1016/S0022-328X(97)00643-8

    Article  CAS  Google Scholar 

  12. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599–630. https://doi.org/10.1103/RevModPhys.65.599

    Article  CAS  Google Scholar 

  13. Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004). Chem Rev 104:4971

    Article  Google Scholar 

  14. Hutchison GR, Ratner MA, Marks TJ (2005) Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J Am Chem Soc 127:2339–2350. https://doi.org/10.1021/ja0461421

    Article  CAS  PubMed  Google Scholar 

  15. Tanabe M, Hagio T, Osakada K, Nakamura M, Hayashi Y, Ohshita J (2017) Synthesis of 4,4-dihydrodithienosilole and its unexpected cyclodimerization catalyzed by Ni and Pt complexes. Organometallics 36:1974–1980. https://doi.org/10.1021/acs.organomet.7b00177

    Article  CAS  Google Scholar 

  16. Ohshita J, Kai H, Takata A, Iida T, Kunai A, Ohta N, Komaguchi K, Shiotani M, Adachi A, Sakamaki K, Okita K (2001) Effects of conjugated substituents on the optical, electrochemical, and electron-transporting properties of dithienosiloles. Organometallics 20:4800–4805. https://doi.org/10.1021/om0103254

    Article  CAS  Google Scholar 

  17. Lin LY, Tsai CH, Wong KT, Huang TW, Hsieh L, Liu SH, Lin HW, Wu CC, Chou SH, Chen SH (2010) An-I Tsai, organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells. J Org Chem 75:4778–4785. https://doi.org/10.1021/jo100762t

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Lam JWY, Tang BZ (2009) Aggregation-induced emission of silole molecules and polymers: fundamental and applications. J Inorg Organomet Polym 19:249–285. https://doi.org/10.1007/s10904-009-9282-8

    Article  CAS  Google Scholar 

  19. Bourass M, Benjelloun AT, Benzakour M, Mcharf M, Hamidi M, Bouzzine SM, Bouachrine M (2016) DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells. Chem. Cent. J. 10:67 1–11. https://doi.org/10.1186/s13065-016-0216-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu G, Yin S, Liu Y, Chen J, Xu X, Sun X, Ma D, Zhan X, Peng Q, Shuai Z, Tang B, Zhu D, Fang W, Luo Y (2005) Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. J Am Chem Soc 127:6335–6346. https://doi.org/10.1021/ja044628b

    Article  CAS  PubMed  Google Scholar 

  21. Irfan A, Chaudhary AR, Muhammad S, Sehemi AGA, Bo H, Mumtaz MW, Qayyum MA (2018) Tuning the optoelectronic and charge transport properties of 2,5-di(pyrimidin-5-yl)thieno[3,2-b]thiophene by oligocene end cores substitution. Results Phys 11:599–604. https://doi.org/10.1016/j.rinp.2018.09.052

    Article  Google Scholar 

  22. Ohshita J, Lee KH, Hashimoto M, Kunugi Y, Harima Y, Yamashita K, Kunai A (2002) Preparation of 4,4-diaryl-2-(tricyanoethenyl)dithienosiloles and vapor-chromic behavior of the film. Org Lett 4:1891–1894. https://doi.org/10.1021/ol025889y

    Article  CAS  PubMed  Google Scholar 

  23. N. Wazzan, Z. Safi, Effect of number and position of methoxy substituents on fine-tuning the electronic structures and photophyscial properties of designed carbazole-base hole transporting materials for perovskite solar cells: DFT calculations, Arab. J. Chem. (2018) In Press. https://doi.org/10.1016/j.arabjc.2018.06.014

  24. Bourass M, Benjelloun AT, Benzakour M, Mchari M, Jhilal F, Spirau FS, Sotiropoulos JM, Bouachrine M (2017) DFT/TD-DFT characterization of conjugational electronic structures and spectral properties of materials based on thieno[3,2-b][1]benzothiophene for organic photovoltaic and solar cell applications. J Saudi Chem Soc 21:563–574. https://doi.org/10.1016/j.jscs.2017.01.001

    Article  CAS  Google Scholar 

  25. Manzoor F, Iqbal J, Zara Z, Eliasson B, ShabirMahr M, Ayub K (2018) Theoretical calculations of the optical and electronic properties of dithienosilole and dithiophene based donor materials for organic solar cells. ChemSelect 1:1–9. https://doi.org/10.1002/slct.201703086

    Article  CAS  Google Scholar 

  26. Bourass M, Benjelloun AT, Benzakour M, Mcharfi M, Hamidi M, Bouzzine SM, Bouachrine M (2016) DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells. Chem Cent J 10:67. https://doi.org/10.1186/s13065-016-0216-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work at ICST was supported by the Department of Science and Technology of Ho Chi Minh City, Vietnam, under Grant no. 5/2018/Đ2/HĐ-KHCNTT (2019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and realization of the study. NVT, TND, and LVD carried out the computations and analysis of results. NVT wrote the first draft. MTN reviewed the results and edited the text. All authors contributed to the writing and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Minh Tho Nguyen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Trang, N., Dung, T.N., Van Duong, L. et al. Structural, electronic, and optical properties of some new dithienosilole derivatives. Struct Chem 31, 2215–2225 (2020). https://doi.org/10.1007/s11224-020-01565-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01565-1

Keywords

Navigation