Abstract
Conformational composition and molecular structure of sulfanilamide (para-aminobenzenesulfonamide, SA) has been investigated by means of gas electron diffraction (GED) and quantum chemical (QC) calculations. Conformations with eclipsed orientation of the S=O and the N–H bonds in the sulfonamide moiety have been found to be predominant in vapor at the average temperature of the GED experiment of 184(5) °C. The structural parameters of the most stable conformer are the following (rh1 in Å and ∠h1 in ° with 3σ in parenthesis): r(C=C) av = 1.410(4), r(S=O)av = 1.433(4), r(C–S) = 1.763(6), r(S–N) = 1.649(6), ∠CSN = 104.7(15), (∠CSO)av = 109.0(8). The orientation of the S–N bond of the sulfonamide group about the anilinic ring plane has been found to be different from orthogonal by about 13°. It has been shown that QC calculations tend to overestimate the values the S=O bond lengths as well as are not always accurate in the prediction of mutual orientation of the sulfonamide group and the anilinic ring plane. While in the gas phase, low energy conformations are found to be the most abundant; the molecular structure of SA in the crystal phase resembles a high energy conformation with staggered orientation of the N–H and the S=O bonds for all polymorph modifications. The mechanisms of mutual transformations of different SA conformers into each other have also been considered and discussed.
Similar content being viewed by others
References
Hager T (2006) The demon under the microscope: from battlefield hospitals to Nazi labs, one doctor’s heroic search for the world’s first miracle drug. Harmony Books ISBN: 1-4000-8214-5
Domagk G (1935). Dtsch Med Wochenschr 61:250–253
Miert ASJPAMV (1994). J Vet Pharmacol Therap 17:309–316
Woods DD (1962). J Gen Microbiol 29:687–702
Sköld O (2000). Drug Resist Updat 3:155–160
Achari A, Somers DO, Champness JN, Bryant PK, Rosemond J, Stammers DK (1997). Nat Struct Biol 4:490–497
Carta F, Supuran CT, Scozzafava A (2014). Future Med Chem 61:1149–1165
La Regina G, Coluccia A, Famiglini V, Pelliccia S, Monti L, Vullo D, Nuto E, Alterio V, De Simone G, Monti SM, Pan P, Parkkila S, Supuran CT, Rossello A, Silvestri R (2015). J Med Chem 58:8564–8572
Yamada A, Kazui Y, Yoshioka H, Tanatani A, Mori S, Kagechika H, Fujii S (2016). ACS Med Chem Lett 7:1028–1033
O’Connor BH, Maslen EN (1965). Acta Cryst 18:363–366
Threlfall TL, Coles SJ, Ward SC, Hursthouse MB, University of Southampton, Crystal Structure Report Archive (1999) 166. https://doi.org/10.5258/ecrystals/166
Coles SJ, Hursthouse MB, Ward SC , Threlfall TL, (1999),University of Southampton, Crystal Structure Report Archive, 170. https://doi.org/10.5258/ecrystals/166
Alléaume M, Decap J (1965). Acta Cryst 18:731–736
O’Connell AM, Maslen EN (1967). Acta Cryst 22:134–145
Alléaume M , Decap J (1965) Acta Cryst 19:934–938
Gelbrich T, Bingham AL, Threlfall T, Hursthouse MB (2008) Acta Cryst. Sect C: Cryst Struct Commun 64:o205–o207
Toscani S, Dzyabchenko A, Agafonov V, Dugue J, Ceolin R (1996). Pharm Res 13:151–154
Toscani S (1998). Thermochim Acta 321:73–79
Portieri A, Harris RK, Fletton RA, Lancaster RW, Threlfall TL (2004). Magn Reson Chem 42:313–320
Frydman L, Olivieri AC, Diaz LE, Frydman B, Schmidt A, Vega S (1990). Mol Phys 70:563–579
Borba A, Gomez-Zavaglia A, Fausto R (2013). J Phys Chem 117:704–717
Popova AD, Georgieva MK, Petrov OI, Petrova KV, Velcheva EA (2007). Int J Quantum Chem 107:1752–1764
Soriano-Correa C, Esquivel RO, Sagar RP (2003). Int J Quantum Chem 94:165–172
Gomes JRB, Gomes P (2005). Tetrahedron 61:2705–2712
Vega-Hissi EG, Anrada MF, Zamarbide GN, Estrada MR (2011) Toma’s-Vert F. J Mol Model 17:1317–1323
Uhlemann T, Sebastian S, Muller C (2017). Phys Chem Chem Phys 22:14625–14640
Giricheva NI, Girichev GV, Medvedeva YS, Ivanov SN, Petrov VM, Fedorov MS (2012). J Mol Struct 1023:25–30
Petrov VM, Giricheva NI, Girichev GV, Petrova VN, Ivanov SN, Bardina AV (2011). J Struct Chem 52(1):60–68
Giricheva NI, Girichev GV, Fedorov MS, Ivanov SN (2013). Struct Chem 24(3):807–818
Giricheva NI, Girichev GV, Medvedeva YS, Ivanov SN, Petrov VM (2012). Struct Chem 23:895–903
Giricheva NI, Fedorov MS, Ivanov SN, Girichev GV (2015). J Mol Struct 1085:191–197
Petrov VM, Petrova VN, Girichev GV, Oberhammer H, Giricheva NI, Ivanov S (2006). J Organomet Chem 71:2952–2956
Petrov VM, Girichev GV, Oberhammer H, Petrova VN, Giricheva NI, Bardina AV, Ivanov SN (2008). J Phys Chem A 112:2969–2976
Giricheva NI, Petrov VM, Dakkouri M, Oberhammer H, Petrova VN, Shlykov SA, Ivanov SN, Girichev GV (2014). J Phys Chem A 119:1502–1510
Vishnevskiy YV, UNEX 16–1075-gd85e256d. https://unexprog.org
Becke AD (1988). Phys Rev A 38(6):3098–3100
Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789
Møller C, Plesset MS (1934). Phys Rev 46:618–622
Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988). J Chem Phys 89:2193–2218
Dunning TH (1989). J Chem Phys 90:1007–1023
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford
Vishnevskiy YV, Zhabanov YA (2015). J Phys Conf Ser 633:012076
Kovacs A, Hargittai I (2000). Struct Chem 11:193–201
Campanelli AR, Domenicano A, Ramondo F, Hargittai I (2004). J Phys Chem A 108:4940–4948
Hargittai I (1985) The structure of volatile sulphur compounds. Reidel Publ. Co., Dordrecht, pp 240–264
Hargittai M, Hargittai I (1987). Phys Chem Miner 14:413–425
Gillespie RJ, Hargittai I (1991 and 2012) The VSEPR model of molecular geometry. Dover, Mineola, pp 137–139
Hagen K, Cross VR, Hedberg KJ (1978). J Mol Struct 44:187–193
Brunvoll J, Exner O, Hargittai I, Kolonits M, Scharfenberg P (1984). J Mol Struct 117:317–322
Acknowledgments
The authors express their deepest gratitude to Prof. G. V. Girichev of the Ivanovo State University of Chemistry and Technology for providing valuable structural data, which were very useful for the investigation described in this manuscript. We also very much appreciate the helpful suggestions made by a reviewer.
Funding
This project was made with financial support of the Russian Foundation for Basic Research (Grant number 18-33-00546 mol_a).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 157 kb)
Rights and permissions
About this article
Cite this article
Kolesnikova, I.N., Rykov, A.N., Kuznetsov, V.V. et al. Joint gas-phase electron diffraction and quantum chemical study of conformational landscape and molecular structure of sulfonamide drug sulfanilamide. Struct Chem 31, 1353–1362 (2020). https://doi.org/10.1007/s11224-020-01528-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11224-020-01528-6