Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials

Abstract

Three Zn(II) complexes of a new organic compound [(E)-4-methyl-N1-((E)-4-methyl-6-(p-tolylimino) cyclohex-3-en-1-ylidene)-N2-(p-tolyl) benzene-1, 2-diamine] (HMBD) were prepared and characterized by various techniques, including Fourier transform infrared (FTIR), UV–visible measurements, 1H-NMR, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The data revealed that the HMBD ligand has an ONS tridentate-forming structure, while the complex of HMBD with zinc metal has a distorted octahedral structure, providing sp3d2 hybridization type. The geometry, HOMO, LUMO, polarizability, and other energetic parameters were evaluated by density functional theory (DFT) on Materials Studio package. Optical band gap (Eg) was estimated by DFT theory and optical properties for [Zn(MBD)(Cl)(H2O)2].2H2O (1), [Zn(MBD)](NO3)2H2O].2H2O (2), and [Zn(MBD)(CH3COO)(H2O)].3H2O (3) thin films as well, revealing that [Zn(MBD)(CH3COO)(H2O)].3H2O (3) thin film has the smallest energy gap and can be considered a highly efficient photovoltaic material. The resulting band gap energy values from both methods were found to be close to each other. Thin films of the ligand and zinc complexes were successfully fabricated by spin coating method. The optical constants, refractive index (n), and the absorption index (k) over the spectral range of the thin films were determined.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig.  4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Martinez MA, Herrero J, Gutierrez MT (1997). Sol Energy Mater Sol Cells 45(1):75–86

    CAS  Article  Google Scholar 

  2. 2.

    Fardousi M, Hossain MF, Islam MS, Ruslan SR (2013). J Mod Sci Techn 1(1):126–134

  3. 3.

    Sankar G, Claude A, Sathya S, Poiyamozh A (2013). Adv Appl Sci Res 4(6):13–20

    CAS  Google Scholar 

  4. 4.

    Lennon C, Kodama R, Chang Y, Sivanathan S, Deshpande M (2008). J Electron Mater 37:9

    Article  Google Scholar 

  5. 5.

    Park YR, Jung D, Kim KC, Suh SJ, Park TS, Kim YS (2009). J Electron 23:2–4

    Google Scholar 

  6. 6.

    Patil PS (1999). Mater Chem Phys 59(3):85–198

    Article  Google Scholar 

  7. 7.

    Krunks K, Bijakina O, Mikli V, Varema T, Mellikov E (1999). Phys Scr T79:209

    CAS  Article  Google Scholar 

  8. 8.

    Hussein HF, Shabeeb GM, Hashim SS (2011). J Mater Env Sci 2(4):423–426

  9. 9.

    Ohyama M, Kozuka H, Yoko T (1997). Thin Solid Films 30(1):78–85

    Article  Google Scholar 

  10. 10.

    Xian CJ, Ahn JK, Seong NJ, Yoon SG, Jang KH, Park WH (2008). J Phys 41(21):215107

    Google Scholar 

  11. 11.

    Panigrahi S, Waugh S, Rout SK, Hassan AK, Ray AK (2004). Indian J Phys 78(8):823–826

  12. 12.

    Chakraborty M, Chowdhury D (2003). J Chem Educ 80(7):806

    CAS  Article  Google Scholar 

  13. 13.

    Forrest SR, Fellow (2000). IEEE J Quantum Elect 6(6):1072–1083

  14. 14.

    Forrest SR (1997). Chem Rev 97:1793

    CAS  Article  Google Scholar 

  15. 15.

    Zoromba M Sh, Hosny NM (2015). J Therm Anal Calorim 119(1):605–611

  16. 16.

    Hosny NM, Zoromba MS, Samir G, Alghool S (2016). J Mol Struct 1122:117–122

    CAS  Article  Google Scholar 

  17. 17.

    Zoromba MS, El-Ghamaz NA, Alghool S (2015). J Inorg Organomet Polym 25:955–963

    CAS  Article  Google Scholar 

  18. 18.

    Slimane AB, Al-Hossainy AF, Zoromba MS (2018). J Mater Sci Mater Electron:1–15

  19. 19.

    Zoromba MS, Alghool S, Abdel-Hamid S, Bassyouni M, Abdel-Aziz M (2016). Polym Adv Technol. https://doi.org/10.1002/pat.3987

  20. 20.

    Zoromba MS, Nasser A, Ghamaz E (2016). Mater Express 6:5

    Article  Google Scholar 

  21. 21.

    Badr AM, El-Amin AA, Al-Hossainy AF (2008). J Phys Chem C 112(36):14188–14195

    CAS  Article  Google Scholar 

  22. 22.

    Luna-Martinez JF, Hernandez-Uresti DB (2011). Carbohydr Polym 84:566–570

    CAS  Article  Google Scholar 

  23. 23.

    El Sayed AM, El-Gamal S, Morsi WM, Mohammed G (2015). J Mater Sci 50:4717–4728

    Article  Google Scholar 

  24. 24.

    Zoromba MS (2017). Spectrochim Acta A Mol Biomol Spectrosc 187:61–67

    CAS  Article  Google Scholar 

  25. 25.

    Al-Hossainy AF, Zoromba MS (2018). J Mol Struct 1156:83–90

  26. 26.

    Wu X, Ray AK (2002) Density-functional study of water adsorption on the PuO2 (110) surface. Phys Rev B Condens Matter 65:85403–85409

    Article  Google Scholar 

  27. 27.

    Modeling and Simulation Solutions for Chemicals and Materials Research, Materials Studio (Version 5.0), Accelrys software Inc., San Diego, USA, 2009

  28. 28.

    Hehre WJ, Radom L, Schlyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  29. 29.

    Kessi A, Delley B (1998) Density functional crystal vs. cluster models as applied to zeolites. Int J Quantum Chem 68:135–144

    CAS  Article  Google Scholar 

  30. 30.

    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B Condens Matter 59:7413

    Article  Google Scholar 

  31. 31.

    Matveev A, Staufer M, Mayer M, Rösch N (1999) Density functional study of small molecules and transition-metal carbonyls using revised PBE functionals. Int J Quantum Chem 75:863–873

    CAS  Article  Google Scholar 

  32. 32.

    Badr AM, EL-Amin AA, Al-Hossainy AF (2006). Eur Phys J B 53(4):439–448

    CAS  Article  Google Scholar 

  33. 33.

    Henderson MJ, Hillmana AR, Vieil E (1998). J Electroanal Chem 454(1–2):1–8

    CAS  Article  Google Scholar 

  34. 34.

    Karidi K, Garoufis A, Hadjiliadis N, Lutz M, Spek AL, Reedijk J (2006). Inorg Chem 45(25):10282–10292

    CAS  Article  Google Scholar 

  35. 35.

    Elsayed SA, Butler IS, Claude BJ, Mostafa SI (2015). Transit Met Chem 40(2):179–187

    CAS  Article  Google Scholar 

  36. 36.

    Popovic Z, Calogovic DM, Hasic J, Topic DV (1999). Inorg Chim Acta 285:208

    CAS  Article  Google Scholar 

  37. 37.

    Soliman IM, El-Nahass MM, Mansou Y (2016). Solid State Commun 225:17–21

    CAS  Article  Google Scholar 

  38. 38.

    Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds, 4th edn. Wiley, New York

    Google Scholar 

  39. 39.

    Colthup NB, Daly LH, Wiberley SE (1975) Introduction to infrared and Raman spectroscopy. Academic Press, New York

    Google Scholar 

  40. 40.

    Andrade EM, Molina FV, Florit MI, Posadas D (1996). J Electronal Chem 419(1):15–21

    CAS  Article  Google Scholar 

  41. 41.

    Axelson JC, Gonzalez MI, Meihaus KR, Chang CJ, Long JR (2016). Inorg Chem 55(15):7527–7534

    CAS  Article  Google Scholar 

  42. 42.

    El-Asmy HA, Butler IS, Mouhri ZS, Jean-Claude BJ, Emmam MS, Mostafa SI (2014). J Mol Struct 1059:193–201

    CAS  Article  Google Scholar 

  43. 43.

    El-Morsy FA, Jean-Claude BJ, Butler IS, El-Sayed SA, Mostafa SI (2014). Inorg Chim Acta 423:144–155

    CAS  Article  Google Scholar 

  44. 44.

    El-Nahass MM, Zeyada HM, Aziz MS, El-Ghamaz NA (2004). Opt Mater 27(3):491–498

    CAS  Article  Google Scholar 

  45. 45.

    Hassan FM, Al-Hossainy AF, Mohamed AE (2009). Phosphorus Sulfur Silicon 184:2996–3022

    CAS  Article  Google Scholar 

  46. 46.

    Honle W, Schnering HG (1981). Z Krist 155:307–314 Zur Struktur von LiP und KSb, Locality: synthetic_database_code_amcsd 0018970

    Google Scholar 

  47. 47.

    Smyth JR (1973). Am Mineral 58:636–648 An orthopyroxene structure up to 850 C, T = 20 C_database_code_amcsd 0000362

    CAS  Google Scholar 

  48. 48.

    Kyono A, Kimata M (2004) Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3. Am Mineral 89:932–940 Sample: Sb0.387Bi1.613S3 _database_code_amcsd 0003559

    CAS  Article  Google Scholar 

  49. 49.

    Hatakeyama T, Quinn FX (1999) Thermal analysis: fundamentals and applications to polymer science, National Institute of Materials and Chemical Research, John Wiley & Sons: Chichester, UK

    Google Scholar 

  50. 50.

    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules, vol. 16 of International series of monographs on chemistry, in, Oxford University Press, New York

  51. 51.

    Govindarajan M, Periandy S, Carthigayen K (2012) FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene. Spectrochim Acta A Mol Biomol Spectrosc 97:411–422

    CAS  Article  Google Scholar 

  52. 52.

    Rakha T, El-Gammal O, Metwally H, El-Reash GA (2014) Synthesis, characterization, DFT and biological studies of (Z)-N′-(2-oxoindolin-3-ylidene) picolinohydrazide and its Co (II), Ni (II) and Cu (II) complexes. J Mol Struct 1062:96–109

    CAS  Article  Google Scholar 

  53. 53.

    Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 58(22):4417–4423

    CAS  Article  Google Scholar 

  54. 54.

    Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2007) Electrophilicity-based charge transfer descriptor. J Phys Chem A 111(7):1358–1361

    CAS  Article  Google Scholar 

  55. 55.

    Yang W, Parr RG (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA 82:6723–6726

    CAS  Article  Google Scholar 

  56. 56.

    Parr RG, Szentpaly LV, Liu S (1999). Electrophilicity index, JACS 121:1922–1924

    CAS  Article  Google Scholar 

  57. 57.

    Politzer P, Truhlar DG (2013) Chemical applications of atomic and molecular electrostatic potentials: reactivity, structure, scattering, and energetics of organic, inorganic, and biological systems, Springer Science & Business Media, LLD, New York

  58. 58.

    Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. J Chem Phys 23:1833–1840

    CAS  Article  Google Scholar 

  59. 59.

    Awad IM, Hassan FM, Mohamed AE, Al-Hossainy AF (2004). Phosphorus Sulfur Silicon 179:1–16

    Article  Google Scholar 

  60. 60.

    Zhou ZH, Wan HL, Tsai KR (2000). Inorg Chem 39:59

    CAS  Article  Google Scholar 

  61. 61.

    Kittel C (ed) (1996) Introduction to solid state physics, seventh ed. John Wiley & Sons, Inc, New York

    Google Scholar 

  62. 62.

    Fenn M, Akuetey G, Donovan PE (1998) Electrical resistivity of Cu and Nb thin films. J Phys Condens Matter 10:1707–1720

    CAS  Article  Google Scholar 

  63. 63.

    Leontie L, Roman M, Brinza F, Podaru C, Rusu GI (2003). Synth Met 138:157

    CAS  Article  Google Scholar 

  64. 64.

    Leontie L, Roman M, Căplănus I, Rusu GI (2002). Prog Org Coat 44:287

    CAS  Article  Google Scholar 

  65. 65.

    Ibrahim A, Al-Hossainy AF (2015). Synth Met 209:389–398

    CAS  Article  Google Scholar 

  66. 66.

    Al-Hossainy AF, Abd-Elmageed AAI, Ibrahim AT (2015). Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.06.020

  67. 67.

    Al-Hossainy AF, Ibrahim A (2015). Mater Sci Semicond Process 38:13–23

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. F. Al-Hossainy or M. Sh. Zoromba.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1- Synthesis of Zn(II) complexes of a new organic compound (HMBD).

2- Characterization of HMBD powder complexes and thin films by various techniques including FT-IR, UVVisible measurements, 1H-NMR, XRD and SEM.

3- The geometry, HOMO, LUMO, polarizability and other energetic parameters were evaluated by DFT.

4- Thin film of the ligand and zinc complexes is successfully fabricated by spin coating method.

5- The optical constants, refractive index, (n), and the absorption index, (k), over the spectral range of the thin films are determined.

Electronic supplementary material

ESM 1

(XLSX 12 kb)

ESM 2

(XLSX 29 kb)

ESM 3

(DOCX 2121 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Hossainy, A.F., Zoromba, M.S., El-Gammal, O.A. et al. Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials. Struct Chem 30, 1365–1380 (2019). https://doi.org/10.1007/s11224-019-1289-3

Download citation

Keywords

  • Zinc-quinonoid complexes
  • Thin film
  • Optical properties
  • Semiconductor materials
  • Density functional theory