A surface-stacking structural model for icosahedral quasicrystals

  • Rima AjlouniEmail author
Original Research


An original structural model for the description of icosahedral quasicrystals is proposed. This novel theoretical approach is based on a surface-stacking image of icosahedral quasicrystals and is in concert with the step-terrace morphology observed in many experimental investigations of real icosahedral surfaces. According to this model, the infinite icosahedral structure is constructed by stacking two arrangements of quasi-periodic surfaces along each of the 5-fold axis of the icosahedral symmetry. In this stacking order, the spacings between the layered surfaces are governed by Fibonacci sequence. The proposed model operates within the real physical (Euclidean) space and provides a direct three-dimensional visual representation of the icosahedral superstructure, which can be instrumental for conducting different modes of experimentations, analyses, and fabrication strategies; eliminating a major roadblock for researchers especially outside the fields of crystallography and material science. More importantly, understanding the long-range surface-stacking logic of the icosahedral structure will hopefully provide a deeper understanding of the structure of quasicrystals at an atomic scale and help achieve improved control over material compositions and structure.


Quasicrystals Icosahedral symmetry Surface stacking Structural model 


Funding information

This research was funded, in part, by the University of Utah Faculty Research and Creative Grant Projects 2015.

Compliance with ethical standards

Conflict of interest

The author declares that there is no conflicts of interest.


  1. 1.
    Shechtman D, Blech I, Gratias D, Cahn JW (1984). Phys Rev Lett 53:1951CrossRefGoogle Scholar
  2. 2.
    Mackay AL (1982). Phys A114:609–613Google Scholar
  3. 3.
    Levine D, Steinhardt PJ (1984). Phys Rev Lett 53:2477–2480CrossRefGoogle Scholar
  4. 4.
    Takakura H, Gómez CP, Yamamoto A, De Boissieu M, Tsai AP (2007). Nat Mater 6:58–63CrossRefPubMedGoogle Scholar
  5. 5.
    Yamamoto A, Takakura H (2008) In: Fujiwara T, Ishii Y (eds) Quasicrystals. Amsterdam, ElsevierGoogle Scholar
  6. 6.
    Steurer W, Deloudi S (2009) Crystallography of quasicrystals. concepts, methods and structures. Springer Series in Materials Science, vol 126. Springer, HeidelbergGoogle Scholar
  7. 7.
    Steurer W (2012). Chem Soc Rev 41:6719–6729CrossRefPubMedGoogle Scholar
  8. 8.
    Abe E (2012). Chem Soc Rev 41:6787–6798CrossRefPubMedGoogle Scholar
  9. 9.
    Dubois JM (2012). Chem Soc Rev 41:6760–6777CrossRefPubMedGoogle Scholar
  10. 10.
    Baake M, Grimm U (2012). Chem Soc Rev 41:6821–6843CrossRefPubMedGoogle Scholar
  11. 11.
    Steurer W, Deloudi S (2014). C R Phys 15:40–47CrossRefGoogle Scholar
  12. 12.
    Tsai AP (2013). Chem Soc Rev 42:5352–5365CrossRefPubMedGoogle Scholar
  13. 13.
    Cui C, Shimoda M, Tsai AP (2014). RSC Adv 4:46907–46921CrossRefGoogle Scholar
  14. 14.
    Janssen T, Janner A (2014). Acta Crystallogr B Struct Sci Cryst Eng Mater 70:617–651CrossRefPubMedGoogle Scholar
  15. 15.
    Steurer W (2018). Acta Cryst A74:1–11Google Scholar
  16. 16.
    Macia E, Dubois JM, Thiel PA (2001) Ullmann’s encyclopedia of industrial chemistry. Weinheim, Wiley-VCH VerlagGoogle Scholar
  17. 17.
    Levine D, Steinhardt PJ (1986). Phys Rev B Condens Matter Mater Phys 34:596–626CrossRefGoogle Scholar
  18. 18.
    Socolar JES, Steinhardt PJ (1986). Phys Rev B: Condens Matter Mater Phys 34:617–647CrossRefGoogle Scholar
  19. 19.
    De Bruijn NG (1981). Ned Akad Wet Proc Ser A Math Sci 84:39–52Google Scholar
  20. 20.
    De Bruijn NG (1981) Ned Akad Wet. Proc Ser A Math Sci 84:53–66Google Scholar
  21. 21.
    Kramer P, Neri R (1984). Acta Cryst A40:580–587CrossRefGoogle Scholar
  22. 22.
    Duneau M, Katz A (1985). Phys Rev Lett 54:2688–2691CrossRefPubMedGoogle Scholar
  23. 23.
    Kalugin PA, Kitayev AY, Levitov LS (1985). JETP Lett 41:145–149Google Scholar
  24. 24.
    Kalugin PA, Kitayev AY, Levitov LS (1985). J Phys Lett 46:601–607CrossRefGoogle Scholar
  25. 25.
    Elser V, Henley CL (1985). Phys Rev Lett 55:2883–2886CrossRefPubMedGoogle Scholar
  26. 26.
    Elser V (1985). Phys Rev B32:4892–4898CrossRefGoogle Scholar
  27. 27.
    Elser V (1986). Acta Cryst A42:36–43CrossRefGoogle Scholar
  28. 28.
    Katz A, Duneau M (1986). J Phys 47:181–196CrossRefGoogle Scholar
  29. 29.
    Katz A, Duneau M (1986). Scr Metall 20:1211–1216CrossRefGoogle Scholar
  30. 30.
    Gähler F (1993). J Non Cryst Solids 160:153–154Google Scholar
  31. 31.
    Cahn JW, Gratias D, Mozer B (1988). J Phys (Paris) 49:1225–1233CrossRefGoogle Scholar
  32. 32.
    Gratias D, Cahn JW, Mozer B (1988). Phys Rev B38:1643–1646CrossRefGoogle Scholar
  33. 33.
    Cahn JW, Gratias D, Mozer B (1988). Phys Rev B38:1638–1642CrossRefGoogle Scholar
  34. 34.
    Ogawa T (1985). J Phys Soc Jpn 54:3205–3208CrossRefGoogle Scholar
  35. 35.
    Danzer L (1989). Discret Math 76:1–7CrossRefGoogle Scholar
  36. 36.
    Madison AE (2015). RSC Adv 5:5745–5753CrossRefGoogle Scholar
  37. 37.
    Mihalkoviˇc M, Zhu WJ, Henley CL, Oxborrow M (1996). Phys Rev B Condens Matter Mater Phys 53:9002–9020CrossRefGoogle Scholar
  38. 38.
    Mihalkoviˇc M, Widom M (2006). Phil Mag 86:519–527CrossRefGoogle Scholar
  39. 39.
    Madison AE (2015). RSC Adv 5:79279–79297CrossRefGoogle Scholar
  40. 40.
    Henley CL (1991). Phys Rev B43:993–1020CrossRefGoogle Scholar
  41. 41.
    Duneau M, Gratias D (2003) In: Kramer P, Papadopolos Z (eds) Coverings of discrete quasiperiodic sets: theory and applications to quasicrystals. Berlin, SpringerGoogle Scholar
  42. 42.
    Tsai AP (2008). Sci Technol Adv Mater 9:013008CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Guyot P, Audier M (2014). C R Phys 15:12–17CrossRefGoogle Scholar
  44. 44.
    Abe E, Yan Y, Pennycook SJR (2004). Nat Mater 3:759–767CrossRefPubMedGoogle Scholar
  45. 45.
    Melnikov G (2017). IOP Conf Ser: Mater Sci Eng 168:012020CrossRefGoogle Scholar
  46. 46.
    Han I, Xiao X, Shahani AJ (2017). Sci Rep 7:17407CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jeong HC, Steinhardt PJ (1994). Phys Rev Lett 73:1943–1946CrossRefPubMedGoogle Scholar
  48. 48.
    Steinhardt PJ, Jeong HC, Saitoh K, Tanaka M, Abe E, Tsai AP (1998). Nature 396:55–57CrossRefGoogle Scholar
  49. 49.
    Abe E, Saitoh K, Takakura H, Tsai AP, Steinhardt PJ, Jeong H (2000). Phys Rev Lett 84:4609–4612CrossRefPubMedGoogle Scholar
  50. 50.
    McGrath R, Ledieu J, Cox EJ, Diehet RD (2002). J Phys Condens Matter 14:119–144CrossRefGoogle Scholar
  51. 51.
    Papadopolos Z, Kasner G, Ledieu J, Cox EJ, Richardson NV, Chen Q, Diehl RD, Lograsso TA, Ross AR, McGrath R (2002). Phys Rev B66:184207CrossRefGoogle Scholar
  52. 52.
    Thiel PA (2004). Prog Surf Sci 75:69–86CrossRefGoogle Scholar
  53. 53.
    Sharma HR, Shimoda M, Tsai AP (2007). Adv Phys 56:403–464CrossRefGoogle Scholar
  54. 54.
    McGrath R, Smerdon JA, Sharma HR, Theis W, Ledieu J (2010). Condens Matter 22:084022CrossRefGoogle Scholar
  55. 55.
    Al Ajlouni R (2011). Philos Mag 91:2728–2738CrossRefGoogle Scholar
  56. 56.
    Al Ajlouni R (2012). Acta Cryst A 68:235–243CrossRefGoogle Scholar
  57. 57.
    Al Ajlouni R (2013) In: Schmid S, Withers RL, Lifshitz R (eds) Aperiodic crystals. Amsterdam, SpringerGoogle Scholar
  58. 58.
    Ajlouni R (2017). J Phys Conf Ser 809:012028CrossRefGoogle Scholar
  59. 59.
    Man W, Megens M, Steinhardt PJ, Chaikin PM (2005). Nature 436:993–996CrossRefPubMedGoogle Scholar
  60. 60.
    Jeon SY, Kwon H, Hur K (2017). Nat Phys 13:363–368CrossRefGoogle Scholar
  61. 61.
    Palberg T (1999). J Phys Condens Matter 11:R323CrossRefGoogle Scholar
  62. 62.
    Schilling T, Schöpe HJ, Oettel M, Opletal G, Snook I (2010). Phys Rev Lett 105:025701CrossRefPubMedGoogle Scholar
  63. 63.
    Kuczera P, Steurer W (2015). Phys Rev Lett 115:085502CrossRefPubMedGoogle Scholar
  64. 64.
    Schmiedeberg M, Achim CV, Hielscher J, Kapfer SC, Löwen H (2017). Phys Rev E96:012602Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The University of UtahSalt Lake CityUSA

Personalised recommendations