Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1565–1577 | Cite as

Using of quantum-chemical calculations to molecular crystals studying

  • Svitlana V. ShishkinaEmail author
Review Article
  • 70 Downloads

Abstract

A brief enough survey on the approaches to molecular crystal structure analysis development is presented in this review. The main focus is on the development and application of the crystal structure analysis method based on the comparison of pairwise interactions energies calculated by ab initio quantum-chemical methods. The peculiarities and possible areas of application of the present method are discussed. Hopefully, the analysis of “energetic” structure of molecular crystals will become a powerful tool for modern crystallographic of organic compounds and a reliable background for crystal prediction and crystal engineering.

Keywords

Molecular crystals Intermolecular interactions Crystal packing Quantum-chemical calculations 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that she has no conflict of interest.

References

  1. 1.
    Kitaigorodsky AI (1973) Molecular crystals and molecules. Academic Press, New York and LondonGoogle Scholar
  2. 2.
    Slovokhotov YL (2019) Organic crystallography: three decades after Kitaigorodskii. Struct Chem 30:551–558CrossRefGoogle Scholar
  3. 3.
    Kiselev AV (1965) Non-specific and specific interactions of molecules of different electronic structures with solid surfaces. Discuss Faraday Soc 40:205–218CrossRefGoogle Scholar
  4. 4.
    Kaplan IG (2006) Intermolecular interactions: physical picture, computational methods and model potentials. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  5. 5.
    Stone A (2013) The theory of intermolecular forces. Oxford University Press, OxfordCrossRefGoogle Scholar
  6. 6.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press, OxfordCrossRefGoogle Scholar
  8. 8.
    Metrangolo P, Resnati G (2015) Halogen bonding I. Springer, Impact on materials chemistry and life sciencesCrossRefGoogle Scholar
  9. 9.
    Metrangolo P, Resnati G (2015) Halogen bonding II. Springer, Impact on materials chemistry and life sciencesCrossRefGoogle Scholar
  10. 10.
    Desiraju GD, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, OxfordCrossRefGoogle Scholar
  11. 11.
    Etter MC (1990) Encoding and decoding hydrogen-bond patterns in organic compounds. Acc Chem Res 23:120–126CrossRefGoogle Scholar
  12. 12.
    Etter MC (1991) Hydrogen bonds as design elements in organic chemistry. J Phys Chem 95:4601–4610CrossRefGoogle Scholar
  13. 13.
    Desiraju GR (1995) Supramolecular synthons in crystal engineering – a new organic synthesis. Angew Chem Int Ed 34:2311–2327CrossRefGoogle Scholar
  14. 14.
    Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res 35:565–573CrossRefGoogle Scholar
  15. 15.
    Desiraju GR (2013) Crystal engineering: from molecule to crystal. J Am Chem Soc 135:9952–9967CrossRefGoogle Scholar
  16. 16.
    Desiraju GR (2017) Crystal engineering: structure, property and beyond. IUCrJ 4:710–711CrossRefGoogle Scholar
  17. 17.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173CrossRefGoogle Scholar
  19. 19.
    Spackman MA (2015) How reliable are intermolecular interaction energies estimated from topological analysis of experimental electron densities? Cryst Growth & Des 15:5624–5628CrossRefGoogle Scholar
  20. 20.
    Shishkin OV (2008) Evaluation of true energy of halogen bonding in the crystals of halogen derivatives of trityl alcohol. Chem Phys Lett 458:96–100CrossRefGoogle Scholar
  21. 21.
    Ganguly P, Desiraju GR (2010) Long-range synthon Aufbau modules (LSAM) in crystal structures: systematic changes in C6H6-nFn (0 ≤ n ≤ 6) fluorobenzenes. Cryst Eng Comm 12:817–833CrossRefGoogle Scholar
  22. 22.
    Pertsin AJ, Kitaigorodskii AI (1987) The atom-atom potential method: applications to organic molecular solids. SpringerGoogle Scholar
  23. 23.
    Gavezzotti A (2002) Calculation of intermolecular interaction energies by direct numerical integration over electron densities. I. Electrostatic and polarization energies in molecular crystals. J Phys Chem B 106:4145–4154CrossRefGoogle Scholar
  24. 24.
    Gavezzotti A (2003) Calculation of intermolecular interaction energies by direct numerical integration over electron densities. 2. An improved polarization model and the evaluation of dispersion and repulsion energies. J Phys Chem B 107:2344–2353CrossRefGoogle Scholar
  25. 25.
    Gavezzotti A (2005) Calculation of lattice energies of organic crystals: the PIXEL integration method in comparison with more traditional methods. Z Kristallogr 220:499–510Google Scholar
  26. 26.
    Maschio L, Civalleri B, Ugliengo P, Gavezzotti A (2011) Intermolecular interaction energies in molecular crystals: comparison and agreement of localized Møller-Plesset 2, dispersion-corrected density functional, and classical empirical two-body calculations. J Phys Chem A 115:11179–11186CrossRefGoogle Scholar
  27. 27.
    Konovalova IS, Shishkina SV, Paponov BV, Shishkin OV (2010) Analysis of the crystal structure of two polymorphic modifications of 3,4-diamino-1,2,4-triazole based on the energy of the intermolecular interactions. Cryst Eng Comm 12:909–916CrossRefGoogle Scholar
  28. 28.
    Šponer J, Jurečka P, Hobza P (2004) Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J Am Chem Soc 126:10142–10151CrossRefGoogle Scholar
  29. 29.
    Pitoňák M, Riley KE, Neogrády P, Hobza P (2008) Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer. Chem Phys Chem 9:1626–1644Google Scholar
  30. 30.
    Hobza P (2011) The calculation of intermolecular interaction energies. Ann Rep Prog Chem Sect C 107:148–168CrossRefGoogle Scholar
  31. 31.
    Shishkin OV, Dyakonenko VV, Maleev AV, Schollmeyer D, Vysotsky MO (2011) Columnar supramolecular architecture of crystals of 2-(4-iodophenyl)-1,10-phenantroline derived from values of intermolecular interaction energy. Cryst Eng Comm 13:800–805CrossRefGoogle Scholar
  32. 32.
    Dyakonenko VV, Maleev AV, Zbruev AI, Chebanov VA, Desenko SM, Shishkin OV (2010) Layered crystal structure of bicyclic aziridines as revealed by analysis of intermolecular interaction energy. Cryst Eng Comm 12:1816–1823CrossRefGoogle Scholar
  33. 33.
    Shishkin OV, Zubatyuk RI, Maleev AV, Boese R (2014) Investigation of topology of intermolecular interactions in the benzene-acetylene co-crystal by different theoretical methods. Struct Chem 25:1547–1552CrossRefGoogle Scholar
  34. 34.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  35. 35.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  36. 36.
    Hansen A, Liakos DG, Neese F (2011) Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals. J Chem Phys 135:214102CrossRefGoogle Scholar
  37. 37.
    Neese F, Hansen A, Wennmohs F, Grimme S (2009) Accurate theoretical chemistry with coupled pair model. Acc Chem Res 42:641CrossRefGoogle Scholar
  38. 38.
    Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968CrossRefGoogle Scholar
  39. 39.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the difference of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  40. 40.
    Truhlar DG (1998) Basis-set extrapolation. Chem Phys Lett 294:45–48CrossRefGoogle Scholar
  41. 41.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefGoogle Scholar
  42. 42.
    Shishkina SV, Baumer VN, Khromileva OV, Kucherenko LI, Mazur IA (2017) The formation of thiotriazoline polymorphs: study from the energetic viewpoint. Cryst Eng Comm 19:2394–2401CrossRefGoogle Scholar
  43. 43.
    Konovalova IS, Nelyubina YV, Lyssenko KA, Paponov BV, Shishkin OV (2011) Intra- and intermolecular interactions in the crystals of 3,4-diamino1,2,4-triazole and its 5-methyl derivative. Experimental and theoretical investigations of charge density distribution. J Phys Chem A 115:8550–8562CrossRefGoogle Scholar
  44. 44.
    Shishkin OV, Dyakonenko VV, Maleev AV (2012) Supramolecular architecture of crystals of fused hydrocarbons based on topology of intermolecular interactions. Cryst Eng Comm 14:1795–1804CrossRefGoogle Scholar
  45. 45.
    Fischer W, Koch E (1979) Geometrical packing analysis of molecular compounds. Z Krist 150:245–260CrossRefGoogle Scholar
  46. 46.
    Baburin IA, Blatov VA (2004) Sizes of molecules in organic crystals: the Voronoi-Dirichlet approach. Acta Cryst Sect B B60:447–452CrossRefGoogle Scholar
  47. 47.
    Panov VN, Goncharov AV, Potekhin KA (1998) Characterization of molecular packing of two noradamantane and brexane derivatives by the method of Dirichlet packing polyhedra. Kristallografia 43:1065–1072Google Scholar
  48. 48.
    Dunitz JD, Gavezzotti A (2012) Supramolecular synthons: validation and ranking of intermolecular interaction energies. Cryst Growth Des 12:5873–5877CrossRefGoogle Scholar
  49. 49.
    Shishkin OV, Zubatyuk RI, Shishkina SV, Dyakonenko VV, Medviediev VV (2014) Role of supramolecular synthons in the formation of the supramolecular architecture of molecular crystals revisited from an energetic viewpoint. Phys Chem Chem Phys 16:6773–6786CrossRefGoogle Scholar
  50. 50.
    Shishkin OV, Medviediev VV, Zubatyuk RI, Shyshkina OO, Kovalenko NV, Volovenko JM (2012) Role of different molecular fragments in formation of the supramolecular architecture of the crystals of 1,1-dioxo-tetrahydro-1λ6-thiopyran-3-one. Cryst Eng Comm 14:8698–8707CrossRefGoogle Scholar
  51. 51.
    Vasylyeva V, Shishkin OV, Maleev AV, Merz K (2012) Crystal structures of fluorinated pyridines from geometrical and energetic perspectives. Cryst Growth Des 12:1032–1039CrossRefGoogle Scholar
  52. 52.
    Shishkin OV, Shishkina SV, Maleev AV, Zubatyuk RI, Vasylyeva V, Merz K (2013) Influence of deuteration and fluorination on the supramolecular architecture of pyridine N-oxide crystals. Chem Phys Chem 14:847–856CrossRefGoogle Scholar
  53. 53.
    Merz K, Evers MV, Uhl F, Zubatyuk RI, Shishkin OV (2014) Role of CHF2- and CF3-substituents on molecular arrangement in the solid state: experimental and theoretical crystal structure analysis of CH3/CHF2/CF3- substituted benzene. Cryst Growth Des 14:3124–3130CrossRefGoogle Scholar
  54. 54.
    Maschke M, Merz K, Shishkin OV, Zubatyuk RI, Metzler-Notle N (2016) Influence of chlorine substituents on the aggregation behavior of chlorobenzoyl-substituted ferrocene derivates. Struct Chem 27:377–387CrossRefGoogle Scholar
  55. 55.
    Shishkin OV, Merz K, Vasylyeva V, Zubatyuk RI (2018) Isotypic transformation principle in molecular crystals. Analysis of supramolecular architecture of fluorinated benzenes and pyridines. Cryst Growth Des 18:4445–4448CrossRefGoogle Scholar
  56. 56.
    Shishkina SV, Konovalova IS, Shishkin OV, Boyko AN (2017) Acceptor properties of amino groups in aminobenzene crystals: study from the energetic viewpoint. Cryst Eng Comm 19:6274–6288CrossRefGoogle Scholar
  57. 57.
    Shishkina SV, Konovalova IS, Shishkin OV, Boyko AN (2017) Influence of substituents on the acceptor properties of the amino groups in the diaminobenzene analogues. Cryst Eng Comm 19:7162–7176CrossRefGoogle Scholar
  58. 58.
    Konovalova IS, Shishkina SV, Bani-Khaled G, Muzyka EN, Boyko AN (2019) Intermolecular interactions in crystals of benzene and its mono- and dinitro derivatives: study from the energetic viewpoint. Cryst Eng Comm 21:2908–2919.  https://doi.org/10.1039/C8CE02099J CrossRefGoogle Scholar
  59. 59.
    Hunter CA, Lawson KR, Perkins J, Urch CJ (2001) Aromatic interactions. J Chem Soc Perkin Trans 2:651–669CrossRefGoogle Scholar
  60. 60.
    Steed JW, Atwood JL (2009) Supramolecular chemistry2nd edn. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  61. 61.
    Shishkina SV, Ukrainets IV, Petrushova LA (2017) Competition between intermolecular hydrogen bonding and stacking in the crystals of 4-Hydroxy-N-(pyridin-2-yl)-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides. Z Kristallogr 232:307–317Google Scholar
  62. 62.
    Dolgushin FM, Smol'yakov AF, Suponitsky KY, Vologzhanina AV, Fedyanin IV, Shishkina SV (2016) Intermolecular interactions in polymorphs of the cyclic trimeric perfluoro-ortho-phenylene mercury from geometric, energetic and AIM viewpoints: DFT study and Hirshfeld surface analysis. Struct Chem 27:37–49CrossRefGoogle Scholar
  63. 63.
    Shishkina SV, Dyakonenko VV, Shishkin OV, Maraval V, Chauvin R (2017) Supramolecular architecture of substituted tetraphenyl-carbo-benzenes from the energetic viewpoint. Chem Phys Chem 18:2499–2508CrossRefGoogle Scholar
  64. 64.
    Zhikol OA, Shishkin OV, Lyssenko KA, Leszczynski J (2005) Electron density distribution in stacked benzene dimers: a new approach towards the estimation of stacking interaction energies. J Chem Phys 122:144104CrossRefGoogle Scholar
  65. 65.
    Lee EC, Kim D, Jurečka P, Tarakeshwar P, Hobza P, Kim KS (2007) Understanding of assembly phenomena by aromatic−aromatic interactions: benzene dimer and the substituted systems. J Phys Chem A 111:3446–3457CrossRefGoogle Scholar
  66. 66.
    Miliordos E, Aprà E, Xantheas SS (2014) Benchmark theoretical study of the π-π binding energy in the benzene dimer. J Phys Chem A 118:7568–7578CrossRefGoogle Scholar
  67. 67.
    Pitoňák M, Neogrády P, Rezáč J, Jurečka P, Urban M, Hobza P (2008) Benzen dimer: high-level wave function and density functional theory calculations. J Chem Theory and Computation 4:1829–1834CrossRefGoogle Scholar
  68. 68.
    Yufit DS, Zubatyuk R, Shishkin OV, Howard JAK (2012) Low-melting molecular complexes. Halogen bonds in molecular complexes of bromoform. Cryst Eng Comm 14:8222–8227CrossRefGoogle Scholar
  69. 69.
    Yufit DS, Shishkin OV, Zubatyuk RI, Howard JAK (2014) Low-melting molecular complexes. Z Kristallogr 229:639–647Google Scholar
  70. 70.
    Yufit DS, Shishkin OV, Zubatyuk RI, Howard JAK (2014) Trimethyltrioxane (paraldehyde) and its halomethanes complexes: crystallization, structures, and analysis of packing motifs. Cryst Growth Des 14:4303–4309CrossRefGoogle Scholar
  71. 71.
    Aakerӧy CB, Beatty AM, Helfrich BA (2001) “Total synthesis” supramolecular style: design and hydrogen-bond-directed assembly of ternary supermolecules. Angew Chem Int Ed Eng 40:3240–3242CrossRefGoogle Scholar
  72. 72.
    Shishkina SV, Isaiev IA, Urzhuntseva VV, Palchykov VA (2019) The formation of the salt and neutral molecule cocrystal from equimolar solution of heliamine and bicycle[2.2.1]hept-5-ene-endo-2,3-dicarboxylic acid. Acta Crystallogr Sect B B75:192–200CrossRefGoogle Scholar
  73. 73.
    Pop M, Sieger P, Cains PW (2009) Tiotropium fumarate: an interesting pharmaceutical co-crystal. J Pharm Sci 98:1820–1834CrossRefGoogle Scholar
  74. 74.
    Dunitz JD, Gavezzotti A (2009) How molecules stick together in organic crystals: weak intermolecular interactions. Chem Soc Rev 38:2622–2633CrossRefGoogle Scholar
  75. 75.
    Rubeš M, Bludský O (2008) Intermolecular π-π interactions in solids. Phys Chem Chem Phys 10:2611–2615CrossRefGoogle Scholar
  76. 76.
    Reddy CM, Krishna GR, Ghosh S (2010) Mechanical properties of molecular crystals – applications to crystal engineering. Cryst Eng Comm 12:2296–2314CrossRefGoogle Scholar
  77. 77.
    Brittain HG (2009) Polymorphism in pharmaceutical solids2nd edn. Informa, New YorkGoogle Scholar
  78. 78.
    Shishkin OV, Medviediev VV, Zubatyuk RI (2013) Supramolecular architecture of molecular crystals possessing shearing mechanical properties: columns versus layers. Cryst Eng Comm 15:160–167CrossRefGoogle Scholar
  79. 79.
    Ukrainets IV, Burian AA, Baumer VN, Shishkina SV, Sidorenko LV, Tugaibei IA, Voloshchuk NI, Bondarenko PS (2018) Synthesis, crystal structure, and biological activity of ethyl 4-methyl-2, 2-dioxo-1H-2λ6, 1-benzothiazine-3-carboxylate polymorphic forms. Sci Pharm 86:1–17Google Scholar
  80. 80.
    Shishkina SV, Levandovskiy IA, Ukrainets IV, Sidorenko LV, Grinevich LA, Yanchuk IB (2018) Polymorphic modifications of a 1H-pyrrolo[3,2,1-ij]quinolone-5-carboxamide possessing strong diuretic properties. Acta Crystallogr Sect C C74:1759–1767CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Scientific Institution “Institute for Single Crystals” of the National Academy of Sciences of UkraineKharkivUkraine
  2. 2.Chemistry DepartmentV.N. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations