Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1699–1706 | Cite as

The equilibrium molecular structure of 2-cyanopyridine from combined analysis of gas-phase electron diffraction and microwave data and results of ab initio calculations

  • Natalja Vogt
  • Leonid S. KhaikinEmail author
  • Anatoliy N. Rykov
  • Olga E. Grikina
  • Anatoly A. Batiukov
  • Jürgen Vogt
  • Igor V. Kochikov
  • Igor F. Shishkov
Original Research
  • 64 Downloads

Abstract

The gas-phase electron diffraction study of 2-cyanopyridine was carried out for the first time. Results of ab initio structure calculations performed at the CCSD(T) level of theory agree well with the equilibrium structure determined by the electron diffraction method in combination with vibrational spectroscopy data and microwave rotational constants. The deviations between them are only a few thousandths of Å units and a few tenths of degree in the bond lengths and bond angles, respectively. The structure in the solid state is more different from that in the gas phase. The observed discrepancies between these structures are up to 0.02 Å and 2° in the bond lengths and bond angles, respectively. The influence of the ortho-, meta-, and para-cyano substituents on the geometry of pyridine ring is discussed. The pyridine ring is noticeably distorted due to cyano substituents. The Cipso–N and/or Cipso–C bond lengths are elongated both in 2-CNP and 4-CNP by 0.004 Å in comparison to those in pyridine, whereas the Cipso–C bond lengths are increased by 0.005 and 0.009 Å in 3-CNP.

Keywords

2-Cyanopyridine Gas-phase electron diffraction Ab initio calculations Microwave rotational constants Equilibrium molecular structure 

Notes

Funding information

This work has been supported by the Dr. B. Mez-Starck Foundation (Germany).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1393_MOESM1_ESM.doc (234 kb)
ESM 1 (DOC 233 kb)

References

  1. 1.
    Joule JA, Mills K (2010) Heterocyclic chemistry. Wiley-Blackwell, ChichesterGoogle Scholar
  2. 2.
    Rodgman A, Perfetti TA (2016) The Chemical Components of Tobacco and Tobacco Smoke. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Umar Y (2015). IOSR J Appl Chem (IOSR-JAC) 8:44–55Google Scholar
  4. 4.
    Honda M, Tamura M, Nakagawa Y, Nakao K, Suzuki K, Tomishige K (2014). Journal of Catalysis 318:95–107CrossRefGoogle Scholar
  5. 5.
    Yıldız R, Döner A, Doğan T, Dehri I (2014). Corros Sci 82:25–132Google Scholar
  6. 6.
    Doraiswamy S, Sharma SD (1971). Curr Sci 40:398–399Google Scholar
  7. 7.
    Sharma SD, Doraiswamy S (1972). Curr Sci 41:475–477Google Scholar
  8. 8.
    Sharma SD, Doraiswamy S (1976). Chem Phys Lett 41:192–198CrossRefGoogle Scholar
  9. 9.
    Ford RG (1975). J Mol Spectrosc 58:178–184CrossRefGoogle Scholar
  10. 10.
    Kubiak R, Janczak J, Śledź M (2002). J Mol Struct 610:59–64CrossRefGoogle Scholar
  11. 11.
    Green JHS, Harrison DJ (1977). Spectrochim Acta 33A:75–79CrossRefGoogle Scholar
  12. 12.
    Spinner E (1963). J Chem Soc 1963:3860–3870CrossRefGoogle Scholar
  13. 13.
    Purvis GD, Bartlett RJ (1982). J Chem Phys 76:1910–1918CrossRefGoogle Scholar
  14. 14.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989). Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  15. 15.
    Peterson KA, Dunning Jr TH (2002). J Chem Phys 117:10548–10560CrossRefGoogle Scholar
  16. 16.
    Møller C, Plesset MS (1934). Phys Rev 46:618–622CrossRefGoogle Scholar
  17. 17.
    Vogt N, Khaikin LS, Grikina OE, Rykov AN (2013). J Mol Struct 1050:114–121CrossRefGoogle Scholar
  18. 18.
    Vogt N, Demaison J, Rudolph HD, Perrin A (2015). Phys Chem Chem Phys 17:30440–30449CrossRefGoogle Scholar
  19. 19.
    Juanes M, Vogt N, Demaison J, Leon I, Lesarri A, Rudolph HD (2017). Phys Chem Chem Phys 19:29162–29169CrossRefGoogle Scholar
  20. 20.
    Vogt N, Marochkin II, Rykov AN (2015). J Phys Chem A 119:152–159CrossRefGoogle Scholar
  21. 21.
    Dunning Jr TH (1989). J Chem Phys 90:1007–1024CrossRefGoogle Scholar
  22. 22.
    Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y,. Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2009) MOLPRO program packageGoogle Scholar
  23. 23.
    Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M (2012). Wiley Interdiscip Rev: Comput Mol Sci 2:242–253Google Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian Inc., WallingfordGoogle Scholar
  25. 25.
    Kochikov IV, Kovtun DM, Tarasov YI (2008). Numerical methods of programming. Section 2 Programming 9:12–18 http://num-meth.srcc.msu.ru/zhurnal/tom_2008/pdf/v9r202.pdf
  26. 26.
    Spiridonov VP (1997) In: Hargittai I, Hargittai M (eds) Advances in molecular structure research, vol 3. JAI, Greenwich, pp 53–81CrossRefGoogle Scholar
  27. 27.
    Spiridonov VP, Vogt N, Vogt J (2001). Struct Chem 12:349–376CrossRefGoogle Scholar
  28. 28.
    Kochikov IV, Tarasov YI, Kuramshina GM, Spiridonov VP, Yagola AG, Strand TG (1998). J Mol Struct 445:243–258CrossRefGoogle Scholar
  29. 29.
    Kochikov IV, Tarasov YI, Spiridonov VP, Kuramshina GM, Yagola AG, Saakjan AS, Popik MV, Samdal S (1999). J Mol Struct 485-486:421–443CrossRefGoogle Scholar
  30. 30.
    Kochikov IV, Tarasov YI, Vogt N, Spiridonov VP (2002). J Mol Struct 607:163–174CrossRefGoogle Scholar
  31. 31.
    Dakkouri M, Kochikov IV, Tarasov YI, Vogt N, Vogt J, Bitschenauer R (2002). J Mol Struct 607:195–206CrossRefGoogle Scholar
  32. 32.
    Kochikov IV, Tarasov YI (2003). Struct Chem 14:227–238CrossRefGoogle Scholar
  33. 33.
    Khaikin LS, Kochikov IV, Grikina OE, Tikhonov DS, Baskir EG (2015). Struct Chem 26:1651–1687CrossRefGoogle Scholar
  34. 34.
    Khaikin LS, Kochikov IV, Rykov AN, Grikina OE, Ageev GG, Shishkov IF, Kuznetsov VV, Makhova NN (2019). Phys Chem Chem Phys 21:5598–5613CrossRefGoogle Scholar
  35. 35.
    Wilson EB, Howard JB (1936). J Chem Phys 4:260–267CrossRefGoogle Scholar
  36. 36.
    Nielsen HH (1951). Rev Mod Phys 23:90–136CrossRefGoogle Scholar
  37. 37.
    Fogarasi G, Pulay P (1985) In: Durig JR (ed) Vibrational spectra and structure, Vol. 14, Chap. 3. Elsevier, Amsterdam, pp 125–219Google Scholar
  38. 38.
    Khaikin LS, Vogt N, Rykov AN, Grikina OE, Vogt J, Kochikov IV, Ageeva ES, Shishkov IF (2018). Mend Commun 28:236–238CrossRefGoogle Scholar
  39. 39.
    Khaikin LS, Vogt N, Rykov AN, Grikina OE, Demaison J, Vogt J, Kochikov IV, Shishova YD, Ageeva ES, Shishkov IF (2018). Russ J Phys Chem A 92:1970–1974CrossRefGoogle Scholar
  40. 40.
    Topaçli A, Bayari S (1996). Spectrosc Lett 29:277–291CrossRefGoogle Scholar
  41. 41.
    Isaq M, Gupta SP, Sharma SD, Ahmad S (1998). Asian J Chem 10:906–909Google Scholar
  42. 42.
    Vogt N, Marochkin II, Rykov AN (2018). Phys Chem Chem Phys 20:9787–9795CrossRefGoogle Scholar
  43. 43.
    Chem3D Ultra, version 17.1 (2018) PerkinElmer Informatics IncGoogle Scholar
  44. 44.
    Tsirelson VG (2010) Quantum chemistry. Molecules, molecular systems and solids. Binom Publ., Moscow, pp 332–335 (in Russian)Google Scholar
  45. 45.
    Voityuk AA, Stasyuk AJ, Vyboishchikov SF (2018). Phys Chem Chem Phys 20:23328–23337CrossRefGoogle Scholar
  46. 46.
    Verstraelen T, Pauwels E, de Proft F, van Speybroeck V, Geerlings P, Waroquier M (2012). Journal of Chemical Theory and Computation 8:661–676CrossRefGoogle Scholar
  47. 47.
    Thompson JD, Xidos JD, Sonbuchner TM, Cramer CJ, Truhlar DG (2002). Phys Chem Comm 5:117–134Google Scholar
  48. 48.
    Cramer SJ (2002) Essential of computational chemistry. Theories and models. Wiley, ChichesterGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentM. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.University of UlmUlmGermany
  3. 3.Scientific Research Computer CenterM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations