Skip to main content
Log in

Atmospheric reaction pathways of methanimine and nitroxyl: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The kinetics and mechanisms of atmospheric reaction of methanimine (H2CNH) with nitroxyl on the singlet surface were studied by employing DFT, MP2, and CCSD(T) methods along with the 6-311++G(3df, 3pd) and aug-cc-pVTZ basis sets. Also, thermodynamic parameters and rate constants have been computed in the temperature range of 300–3000 K using conventional transition state theory and RRKM theories at MP2/6-311++G(3df,3pd) level. The results show that seven adducts can be produced. Two of them are highly thermodynamically stable (CH4+N2O and HNCNH+H2O). In kinetic point of view, HCN + HNOH and H2CN + H2NO adducts (due to passing one corresponding low-level transition state) are favorable pathways of title reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bunkan AJC, Tang Y, Sellevåg SR, Nielsen CJ (2014) Atmospheric gas phase chemistry of CH2NH and HNC. A first-principles approach. J Phys Chem A 118(28):5279–5288

    CAS  Google Scholar 

  2. Quinto-Hernandez A, Wodtke AM, Bennett CJ, Kim YS, Kaiser RI (2011) On the interaction of methyl azide (CH3N3) ices with ionizing radiation: formation of methanimine (CH2NH), hydrogen cyanide (HCN), and hydrogen isocyanide (HNC). J Phys Chem A 115(3):250–264

    CAS  Google Scholar 

  3. Godfrey P, Brown R, Robinson B, Sinclair M (1973) Discovery of interstellar methanimine (formaldimine). Astrophys Lett 13:119

    CAS  Google Scholar 

  4. Vuitton V, Yelle R, Anicich V (2006) The nitrogen chemistry of Titan’s upper atmosphere revealed. Astrophys J Lett 647(2):L175

    CAS  Google Scholar 

  5. Crovisier J, Bockelée-Morvan D, Colom P, Biver N, Despois D, Lis D (2004) The composition of ices in comet C/1995 O1 (Hale-Bopp) from radio spectroscopy-further results and upper limits on undetected species. Astron Astrophys 418(3):1141–1157

    CAS  Google Scholar 

  6. Moore M, Hudson R (2003) Infrared study of ion-irradiated N2-dominated ices relevant to Triton and Pluto: formation of HCN and HNC. Icarus 161(2):486–500

    CAS  Google Scholar 

  7. Johnson DR, Lovas FJ (1972) Microwave detection of the molecular transient methyleneimine (CH2NH). Chem Phys Lett 15(1):65–68

    CAS  Google Scholar 

  8. Jacox ME, Milligan DE (1975) The infrared spectrum of methylenimine. J Mol Spectrosc 56(3):333–356

    CAS  Google Scholar 

  9. Pearson Jr R, Lovas FJ (1977) Microwave spectrum and molecular structure of methylenimine (CH2NH). J Chem Phys 66(9):4149–4156

    CAS  Google Scholar 

  10. Duxbury G, Kato H, Le Lerre ML (1981) Laser stark and interferometric studies of thioformaldehyde and methyleneimine. Faraday Discuss Chem Soc 71:97–110

    CAS  Google Scholar 

  11. Hamada Y, Hashiguchi K, Tsuboi M, Koga Y, Kondo S (1984) Pyrolysis of amines: infrared spectrum of methyleneimine. J Mol Spectrosc 105(1):70–80

    CAS  Google Scholar 

  12. Halonen L, Duxbury G (1985) The Fourier transform infrared spectrum of methyleneimine in the 10 μm region. J Chem Phys 83(5):2078–2090

    CAS  Google Scholar 

  13. Halonen L, Duxbury G (1985) High resolution infrared spectrum of methyleneimine, CH2NH, in the 3 μm region. J Chem Phys 83(5):2091–2096

    CAS  Google Scholar 

  14. Halonen L, Duxbury G (1985) Fourier transform infrared spectrum of CH2NH: the ν1 band. Chem Phys Lett 118(3):246–251

    CAS  Google Scholar 

  15. Dickens J, Irvine WM, DeVries C, Ohishi M (1997) Hydrogenation of interstellar molecules: a survey for methylenimine (CH2NH). Astrophys J 479(1):307

    CAS  Google Scholar 

  16. Pouchan C, Zaki K (1997) Ab initio configuration interaction determination of the overtone vibrations of methyleneimine in the region 2800–3200 cm− 1. J Chem Phys 107(2):342–345

    CAS  Google Scholar 

  17. Salter C, Ghosh T, Catinella B, Lebron M, Lerner M, Minchin R, Momjian E (2008) The arecibo ARP 220 spectral census. I. Discovery of the pre-biotic molecule methanimine and new cm-wavelength transitions of other molecules. Astron J 136(1):389

    CAS  Google Scholar 

  18. Akbar Ali M, Barker JR (2015) Comparison of three isoelectronic multiple-well reaction systems: OH+ CH2O, OH+ CH2CH2, and OH+ CH2NH. J Phys Chem A 119(28):7578–7592

    CAS  Google Scholar 

  19. Fang D, Fu X (1992) Ab initio study on the mechanism of cycloaddition reaction of ketene with methylenimine: a new reaction scheme. Int J Quantum Chem 43(5):669–676

    CAS  Google Scholar 

  20. Zhou C, Birney DM (2002) A density functional theory study clarifying the reactions of conjugated ketenes with formaldimine. A plethora of pericyclic and pseudopericyclic pathways. J Am Chem Soc 124(18):5231–5241

    CAS  Google Scholar 

  21. Arnaud R, Adamo C, Cossi M, Milet A, Vallee Y, Barone V (2000) Theoretical study of the addition of hydrogen cyanide to methanimine in the gas phase and in aqueous solution. J Am Chem Soc 122(2):324–330

    CAS  Google Scholar 

  22. Basiuk VA (2001) Formation of amino acid precursors in the interstellar medium. A DFT study of some gas-phase reactions starting with methylenimine. J Phys Chem A 105(17):4252–4258

    CAS  Google Scholar 

  23. Aylward N, Bofinger N (2001) The reactions of methanimine and cyanogen with carbon monoxide in prebiotic molecular evolution on earth. Orig Life Evol Biosph 31(6):481–500

    CAS  Google Scholar 

  24. Landera A, Mebel AM (2010) Mechanisms of formation of nitrogen-containing polycyclic aromatic compounds in low-temperature environments of planetary atmospheres: a theoretical study. Faraday Discuss 147:479–494

    CAS  Google Scholar 

  25. Pan Y, Tang Y, Wang R (2011) A DFT and ab initio study on the mechanisms of atmospheric CH2NH+O(3P) reaction. Comput Theor Chem 965(2):298–304

    CAS  Google Scholar 

  26. Gong S, Wang C, Li Q (2012) Theoretical study of the mechanisms and rate constants on the reaction of H2CNH with O (3P). Comput Theor Chem 991:141–149

    CAS  Google Scholar 

  27. Yang Q, Liu Y, Zhang W (2011) A theoretical study of imine-ene reaction influencing factors. Org Biomol Chem 9(18):6343–6351. https://doi.org/10.1039/C1OB05493G

    Article  CAS  Google Scholar 

  28. Ali MA, Sonk JA, Barker JR (2016) Predicted chemical activation rate constants for HO2+ CH2NH: the dominant role of a hydrogen-bonded pre-reactive complex. J Phys Chem A 120(36):7060–7070

    CAS  Google Scholar 

  29. Asgharzadeh S, Vahedpour M (2018) Kinetic and mechanisms of methanimine reactions with singlet and triplet molecular oxygen: substituent and catalyst effects. Chem Phys Lett 702:57–68

    CAS  Google Scholar 

  30. Wiberg EH, Frederick A (2001) Inorganic chemistry. Elsevier

  31. Winnewisser G, Herbst E (1987) Organic molecules in space. Organic geo-and cosmochemistry. Springer, pp 119–172

  32. Suárez SA, Bikiel DE, Wetzler DE, Martí MA, Doctorovich F (2013) Time-resolved electrochemical quantification of azanone (HNO) at low nanomolar level. Anal Chem 85(21):10262–10269

    Google Scholar 

  33. Soto MR, Page M (1992) Ab initio variational transition-state-theory reaction-rate calculations for the gas-phase reaction H+ HNO→ H2+ NO. J Chem Phys 97(10):7287–7296

    CAS  Google Scholar 

  34. Page M, Soto MR (1993) Radical addition to HNO. Ab initio reaction path and variational transition state theory calculations for H+ HNO→ H2NO and H+ HNO→ HNOH. J Chem Phys 99(10):7709–7717

    CAS  Google Scholar 

  35. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian09 Revision D. 01. Gaussian Inc., Wallingford CT

    Google Scholar 

  36. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46(7):618

    Google Scholar 

  37. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    CAS  Google Scholar 

  39. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1–3):215–241

    CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167

    CAS  Google Scholar 

  41. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    CAS  Google Scholar 

  42. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90(4):2154–2161

    CAS  Google Scholar 

  43. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157(6):479–483

    CAS  Google Scholar 

  44. Lee TJ, Taylor PR (1989) A diagnostic for determining the quality of single-reference electron correlation methods. Int J Quantum Chem 36(S23):199–207

    Google Scholar 

  45. Biegler-König F, Schönbohm J, Derdau R, Bayles D, Bader R (2002) AIM2000, version 2.0. McMaster University

  46. Miyoshi A (2010) Gaussian post processor (GPOP). University of Tokyo, Tokyo

    Google Scholar 

  47. Miyoshi A (2010) Steady-state unimolecular master-equation solver (SSUMES). University of Tokyo

  48. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3(2):107–115

    CAS  Google Scholar 

  49. Forst W (2012) Theory of unimolecular reactions. Elsevier

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Vahedpour.

Ethics declarations

Conflict of interest

Reza Zareipour certifies that the manuscript represents valid work; neither this manuscript nor one with substantially similar content under his authorship has been published or is being considered for publication elsewhere and copies of any closely related manuscripts are enclosed in the manuscript submission. Also, he agrees to allow the corresponding author to serve as the primary correspondent with the editorial office and to review. All authors agree to submit this manuscript in journal “Structural Chemistry.”

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareipour, R., Vahedpour, M. Atmospheric reaction pathways of methanimine and nitroxyl: a theoretical study. Struct Chem 31, 85–95 (2020). https://doi.org/10.1007/s11224-019-01375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01375-0

Keywords

Navigation