Skip to main content
Log in

A look at bonds and bonding

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Even after roughly a century of quantum theory, there is still debate, sometimes rather contentious, as to the nature of the chemical bond—or is it bonds, or is it bonding? In this brief overview, we summarize some of the prominent approaches to this and related issues. A key focus in any interpretation must be satisfying the two requirements that the energy of a stable molecule or complex be a minimum and that the resultant Coulombic force upon each nucleus be zero. The overall kinetic energy change in molecule formation is positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bader RFW (1998). J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  2. Bader RFW (2009). J Phys Chem A 113:10391–10396

    Article  CAS  Google Scholar 

  3. Allen TL, Shull H (1961). J Chem Phys 35:1644–1651

    Article  CAS  Google Scholar 

  4. Jacobsen H (2009). J Comput Chem 30:1093–1102

    Article  CAS  Google Scholar 

  5. Foroutan-Nejad C, Shahbazian S, Marek R (2014). Chem Eur J 20:10140–10152

    Article  CAS  Google Scholar 

  6. Gillespie RJ, Robinson EA (2007). J Comput Chem 28:87–97

    Article  CAS  Google Scholar 

  7. Rahm M, Hoffmann R (2016). J Amer Chem Soc 138:3731–3744

    Article  CAS  Google Scholar 

  8. Slater JC (1972). J Chem Phys 57:2389–2396

    Article  CAS  Google Scholar 

  9. Tal Y, Bader RFW, Erkku J (1980). Phys Rev A 21:1–11

    Article  CAS  Google Scholar 

  10. Parr RG, Berk A (1981) in Chemical applications of atomic and molecular electrostatic potentials, Politzer, P.; Truhlar, D.G., eds., Plenum Press, New York, ch 4, pp. 51–62

  11. Politzer P, Zilles BA (1984). Croat Chem Acta 57:1055–1064

    CAS  Google Scholar 

  12. Ivanic J, Atchity GJ, Ruedenberg K (2008). Theor Chem Accounts 120:281–294

    Article  CAS  Google Scholar 

  13. Gilbert ATB, Gill PMW, Taylor SW (2004). J Chem Phys 120:7887–7893

    Article  CAS  Google Scholar 

  14. Parr RG, Ayers PW, Nalewajski RF (2005). J Phys Chem A 109:3957–3959

    Article  CAS  Google Scholar 

  15. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford, UK

    Google Scholar 

  16. Bader RFW (1991). Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  17. Matta CF, Bader RFW (2006). J Phys Chem A 110:6365–6371

    Article  CAS  Google Scholar 

  18. Clark T, Murray JS, Politzer P (2018). Phys Chem Chem Phys 20:30076–30082

    Article  CAS  Google Scholar 

  19. Schwarz WHE, Mons HE (1989). Chem Phys Lett 156:275–279

    Article  CAS  Google Scholar 

  20. Slater JC (1933). J Chem Phys 1:687–691

    Article  CAS  Google Scholar 

  21. Levine IN (2000) Quantum chemistry5th edn. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  22. Hellmann H (1937) Einführung in die Quantenchemie, Deuticke, Leipzig

  23. Feynman RP (1939). Phys Rev 56:340–343

    Article  CAS  Google Scholar 

  24. Politzer P, Murray JS (2018). J Mol Model 24:266

    Article  Google Scholar 

  25. Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  26. Politzer P, Murray JS, Clark T (2015). Topics Curr Chem 358:19–42

    Article  CAS  Google Scholar 

  27. Politzer P, Murray JS, Clark TJ (2015). Mol Model 52(1–10):21

    Google Scholar 

  28. Schrödinger E (1926). Ann Physik 79:361–376

    Article  Google Scholar 

  29. Schrödinger E (1926). Ann. Physik 81:109–139

    Article  Google Scholar 

  30. Hohenberg P, Kohn W (1964). Phys Rev B 136:864–871

    Article  Google Scholar 

  31. Heitler W, London F (1927). Z. Physik 44:455–472

  32. London F (1928). Z. Physik 46:455–477

  33. Bader RFW (2010). J Mol Struct (THEOCHEM) 943:2–18

    Article  CAS  Google Scholar 

  34. Bader RFW (2006). Chem Eur J 12:2896–2901

    Article  CAS  Google Scholar 

  35. Bader RFW, Beddall PM (1972). J Chem Phys 56:3320–3329

    Article  CAS  Google Scholar 

  36. Hirshfeld FL, Rzotkiewicz S (1974). Mol Phys 27:1319–1343

    Article  CAS  Google Scholar 

  37. Dunitz, J.D.; Seiler, P. J. Amer. Chem. Soc. 1983, 105, 7056–7058

  38. Batsanov SS (1998). Struct Chem 9:65–68

    Article  CAS  Google Scholar 

  39. Cremer D, Kraka E (1984). Angew Chem Int Ed 23:627–628

    Article  Google Scholar 

  40. Lysenko, K.A.; Antipin, M.Y.; Khrustalev, V.N. Russ. Chem. Bull. 2001, 50, 1539–1549

  41. Messerschmidt M, Scheins S, Grubert L, Patzel M, Szeimies G, Paulmann C, Luger P (2005). Angew Chem Int Ed 44:3925–3928

    Article  CAS  Google Scholar 

  42. Yang Y (2012). J Phys Chem A 116:10150–10159

    Article  CAS  Google Scholar 

  43. Christoffersen RE, Shull H (1968). J Chem Phys 48:1790–1797

    Article  CAS  Google Scholar 

  44. Hellmann H (1933). Z. Physik 85:180–190

  45. Ruedenberg K (1962). Rev Mod Phys 34:326–376

    Article  CAS  Google Scholar 

  46. Gordon MS, Jensen JH (2000). Theor Chem Accounts 103:248–251

    Article  CAS  Google Scholar 

  47. Ruedenberg K, Schmidt MW (2009). J Phys Chem A 113:1954–1968

    Article  CAS  Google Scholar 

  48. Zhao L, Schwarz WHE, Frenking G (2019). Nature Rev Chem 3:35–47

    Article  Google Scholar 

  49. Schmidt MW, Ivanic J, Ruedenberg KJ (2014). Chem Phys 140:204104(1–204104(20410414

  50. Perrin CL (1991). J Am Chem Soc 113:2865–2868

    Article  CAS  Google Scholar 

  51. Saethre LJ, Siggel MRF, Thomas TD (1991). J Am Chem Soc 113:5224–5230

    Article  CAS  Google Scholar 

  52. De Proft F, Van Alsenoy C, Peeters A, Langenaker W, Geerlings P (2002). J Comput Chem 23:1198–1209

    Article  Google Scholar 

  53. Haaland A, Helgaker TU, Ruud K, Shorokhov DJ (2000). J Chem Educ 77:1076–1080

    Article  CAS  Google Scholar 

  54. Wiener JJM, Grice ME, Murray JS, Politzer P (1996). J Chem Phys 104:5109–5111

    Article  CAS  Google Scholar 

  55. Cerpa E, Krapp A, Vela A, Merino G (2008). Chem Eur J 14:10232–10234

    Article  CAS  Google Scholar 

  56. Grimme S, Mück-Lichtenfeld C, Erker G, Kehr G, Wang H, Beckers H, Willner H (2009). Angew Chem Int Ed 48:2592–2595

    Article  CAS  Google Scholar 

  57. Lane JR, Contreras-Garcia J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013). J Chem Theory Comput 9:3263–3266

    Article  CAS  Google Scholar 

  58. Spackman MA (2015). Cryst Growth Des 15:5624–5628

    Article  CAS  Google Scholar 

  59. Wick CR, Clark T (2018). J Mol Model 24:142

    Article  Google Scholar 

  60. Mitzel NW, Vojinović K, Fröhlich R, Foerster T, Robertson HE, Borisenko KB, Rankin DWH (2005). J Am Chem Soc 127:13705–13713

    Article  CAS  Google Scholar 

  61. Frenking G, Krapp A (2007). J Comput Chem 28:15–24

    Article  CAS  Google Scholar 

  62. Shaik S (2007). J Comput Chem 28:51–61

    Article  CAS  Google Scholar 

  63. Frenking G (2003). Angew Chem Int Ed 42:143–147

  64. Parr RG (1963) Quantum theory of molecular electronic structure. W.A.Benjamin, New York

    Google Scholar 

  65. James HM, Coolidge AS (1933). Theor Chem Accts 131:1114(1–10)

  66. Lennard-Jones, J.; Pople, J.A. Proc. Royal Soc., London, Series A 1951, 210, 190–206

  67. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012). J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  68. Politzer P, Murray JS (2012). Theor Chem Accts 131:1114(1–1114(111410

  69. Nayak SK, Kumar V, Murray JS, Politzer P, Terraneo G, Pilati T, Metrangolo P, Renati G (2017). Cryst Eng Comm 19:4955–4959

    Article  CAS  Google Scholar 

  70. Politzer P, Resnati G, Murray JS (2017). Faraday Disc 203:113–130

    Article  Google Scholar 

  71. Politzer P, Murray JS, Clark T, Resnati G (2017). Phys Chem Chem Phys 19:32166–32178

    Article  CAS  Google Scholar 

  72. Politzer P, Murray JS (2017). Crystals 7:212(1–14)

  73. Politzer P, Murray JS (2017). J Comput Chem 39:464–471

    Article  Google Scholar 

  74. Politzer P, Murray JS (2019). Crystals 9:165(1–15)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politzer, P., Murray, J.S. A look at bonds and bonding. Struct Chem 30, 1153–1157 (2019). https://doi.org/10.1007/s11224-019-01364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01364-3

Keywords

Navigation