Quantum chemical study of the nature of interactions between the boraphosphinine and alumaphosphinine with some of the mono- and divalent cations: cation–π or cation–lone pair?

Abstract

Quantum chemical study of the nature of interactions between the boraphosphinine (BP) and alumaphosphinine (AlP) with some of the alkali metal cations (Li+, Na+, K+) and alkaline-earth cations (Be2+, Mg2+, Ca2+) have been investigated at M06-2X/6-311++G(d,p) level of theory. At first, the molecular and electronic structures of the rings (R) and cations (M) were completely analyzed. According to the molecular electrostatic potential (MEP) iso-surface of BP and AlP, the active sites of rings are identified and also predict the relative strength of M···R interactions as follows: Be2+···R > Mg2+···R > Ca2+···R > Li+···R > Na+···R > K+···R. Furthermore, all of the complexes are characterized and their energetic components, geometrical, topological, and molecular orbital descriptors were used to estimate the strength of M···R interactions. The result shows that the non-covalent interactions of M···AlP are significantly stronger than the corresponding M···BP ones. Detail investigation of M···BP and M···AlP series clearly shows a substantial difference in the nature of interactions, cation–π/cation–lone pair (LP) in M···BP/M···AlP complexes. The excellent linear correlations between the energy terms and all of the mentioned descriptors are obtained. Finally, two well-established indices namely the nucleus independent chemical shift (NICS) and the average two-center index (ATI) were used to evaluate the aromaticity of the studied rings before and after complexation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Scheiner S (2015) Non-covalent Forces. Springer, Heidelberg

    Google Scholar 

  2. 2.

    Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment, vol 2. Royal Society of Chemistry

  3. 3.

    Del Bene JE, Alkorta I, Elguero J (2014) Pnicogen-bonded anionic complexes. J Phys Chem A 118(18):3386–3392

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Zayed JM, Nouvel N, Rauwald U, Scherman OA (2010) Chemical complexity—supramolecular self-assembly of synthetic and biological building blocks in water. Chem Soc Rev 39:2806–2816

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Strekowski L, Wilson B (2007) Non-covalent interactions with DNA: an overview. Mutat Res Fundam Mol Mech Mutagen 623:3–13

    Article  CAS  Google Scholar 

  6. 6.

    Wheeler SE, Bloom JW (2014) Toward a more complete understanding of noncovalent interactions involving aromatic rings. J Phys Chem A 118:6133–6147

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Riley KE, Hobza P (2011) Non-covalent interactions in biochemistry. Wiley Interdiscip Rev Comput Mol Sci 1:3–17

    Article  CAS  Google Scholar 

  8. 8.

    Lehn JM (1988) Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew Chem Int Ed Engl 27:89–112

    Article  Google Scholar 

  9. 9.

    Beno BR, Yeung KS, Bartberger MD, Pennington LD, Meanwell NA (2015) A survey of the role of noncovalent sulfur interactions in drug design. J Med Chem 58:4383–4438

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Anfinsen CB (1972) The formation and stabilization of protein structure. Biochem J 128:737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Aakeröy CB, Champness NR, Janiak C (2010) Recent advances in crystal engineering. CrystEngComm 12:22–43

    Article  Google Scholar 

  12. 12.

    Riley KE, Pitonák M, Jurecka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Sarmah N, Bhattacharyya PK (2016) Behaviour of cation–pi interaction in presence of external electric field. RSC Adv 6:100008–100015

    Article  CAS  Google Scholar 

  15. 15.

    Sunner J, Nishizawa K, Kebarle P (1981) Ion-solvent molecule interactions in the gas phase. The potassium ion and benzene. J Phys Chem 85:1814–1820

    Article  CAS  Google Scholar 

  16. 16.

    Reddy AS, Zipse H, Sastry GN (2007) Cation− π interactions of bare and coordinatively saturated metal ions: contrasting structural and energetic characteristics. J Phys Chem B 111:11546–11553

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Nicholas JB, Hay BP, Dixon DA (1999) Ab initio molecular orbital study of cation− π binding between the alkali-metal cations and benzene. J Phys Chem A 103:1394–1400

    Article  CAS  Google Scholar 

  18. 18.

    Bauzá A, Frontera A (2018) Regium-π vs cation-π interactions in M2 and MCl (M= Cu, Ag and Au) complexes with small aromatic systems: an ab initio study. Inorganics 6:64

    Article  CAS  Google Scholar 

  19. 19.

    Demircan CA, Bozkaya U (2017) Transition metal cation− π interactions: complexes formed by Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ binding with benzene molecules. J Phys Chem A 121:6500–6509

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Su H, Wu Q, Wang H, Wang H (2017) An assessment of the random-phase approximation functional and characteristics analysis for noncovalent cation–π interactions. Phys Chem Chem Phys 19:26014–26021

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Solimannejad M, Hosseini SM, Zabardasti A (2017) A computational study of interplay between hydride bonding and cation–π interactions: H-Mg-H··· X··· Y triads (X= Li+, Na+, Y= C2H2, C2H4, C6H6) as model systems. Mol Phys 115:825–830

    Article  CAS  Google Scholar 

  22. 22.

    Bhunia S, Singh A, Ojha AK (2017) Investigation of the encapsulation of metal cations (Cu2+, Zn2+, Ca2+ and Ba2+) by the dipeptide Phe–Phe using natural bond orbital theory and molecular dynamics simulation. J Mol Model 23:88

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Rezvani Rad O, Nowroozi A (2017) Interplay between the intramolecular hydrogen bonds and cation–π interactions in various complexes of salicylaldehyde, thiosalicylaldehyde and selenosalicylaldehyde with Li+, Na+, K+, Mg2+ and Ca2+ cations. Mol Phys 115:784–794

    Article  CAS  Google Scholar 

  24. 24.

    Nowroozi A, Rad OR (2017) A comparative study of cooperative effects between the intramolecular hydrogen bond and cation··· π interaction in various complexes of ortho-aminobenzaldehyde with its thio and seleno analogous. Theor Chem Accounts 136:23

    Article  CAS  Google Scholar 

  25. 25.

    Rupakheti CR, Roux B, Dehez F, Chipot C (2018) Modeling induction phenomena in amino acid cation–π interactions. Theor Chem Accounts 137:174

    Article  CAS  Google Scholar 

  26. 26.

    Neel AJ, Hilton MJ, Sigman MS, Toste FD (2017) Exploiting non-covalent π interactions for catalyst design. Nature 543:637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Neves AR, Fernandes PA, Ramos MJ (2011) The accuracy of density functional theory in the description of cation− π and π–hydrogen bond interactions. J Chem Theory Comput 7:2059–2067

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, KleneM LX, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 revision C 02 (or D 01). Gaussian Inc, Pittsburgh

    Google Scholar 

  29. 29.

    Lu T (2015) Multiwfn: a multifunctional wave function analyzer, version 3.3. 7

  30. 30.

    Boys SF, Bernardi FD (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  31. 31.

    Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee Mission

    Google Scholar 

  32. 32.

    Keith TA (2013) AIMAll (Version 13.11. 04). TK Gristmill Software, Overland Park

    Google Scholar 

  33. 33.

    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  34. 34.

    Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  35. 35.

    Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  Google Scholar 

  36. 36.

    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  37. 37.

    Glendening ED, Reed AE, Carpenter JE, Weinhold F (2001) NBO. Theoretical Chemistry Institute, University of Wisconsin, Madison, USA

  38. 38.

    Schleyer PVR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Schleyer PVR, Manoharan M, Wang ZX, Kiran B, Jiao H, Puchta R, van Eikema Hommes NJ (2001) Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org Lett 3:2465–2468

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Bultinck P, Ponec R, Van Damme S (2005) Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J Phys Org Chem 18:706–718

    Article  CAS  Google Scholar 

  41. 41.

    Hameka HF (1958) On the nuclear magnetic shielding in the hydrogen molecule. Mol Phys 1:203–215

    Article  CAS  Google Scholar 

  42. 42.

    Schottel BL, Chifotides HT, Dunbar KR (2008) Anion-π interactions. Chem Soc Rev 37:68–83

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Frontera A, Quinonero D, Deya PM (2011) Cation–π and anion–π interactions. WIREs Comput Mol Sci 1:440–459

    Article  CAS  Google Scholar 

  44. 44.

    Frontera A, Quiñonero D, Costa A, Ballester P, Deyà PM (2007) MP2 study of cooperative effects between cation–π, anion–π and π–π interactions. New J Chem 31:556–560

    Article  CAS  Google Scholar 

  45. 45.

    Ikkanda BA, Iverson BL (2016) Exploiting the interactions of aromatic units for folding and assembly in aqueous environments. Chem Commun 52:7752–7759

    Article  CAS  Google Scholar 

  46. 46.

    Frontera A, Saczewski F, Gdaniec M, Dziemidowicz-Borys E, Kurland A, Deyà PM, Garau C (2005) Anion–π interactions in cyanuric acids: a combined crystallographic and computational study. Chem Eur J 11:6560–6567

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Rezvani Rad O, Nowrozi A (2018) Anion˗ π and intramolecular hydrogen bond interactions in the various complexes of 1, 3, 5-Triamino-2, 4, 6-trinitrobenzene with H-, F-, Cl-and Br-anions. Phys Chem Res 6:251–262

    Google Scholar 

  48. 48.

    Ebrahimi A, Razmazma H, Samareh Delarami H (2016) The nature of halogen bonds in [N∙∙∙ X∙∙∙ N]+ complexes: a theoretical study. Phys Chem Res 4:1–15

    Google Scholar 

  49. 49.

    Bania KK, Guha AK, Bhattacharyya PK, Sinha S (2014) Effect of substituent and solvent on cation–π interactions in benzene and borazine: a computational study. Dalton Trans 43:1769–1784

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Varadwaj A, Varadwaj PR, Marques HM, Yamashita K (2018) A DFT assessment of some physical properties of iodine-centered halogen bonding and other non-covalent interactions in some experimentally reported crystal geometries. Phys Chem Chem Phys 20:15316–15329

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Panneer SVK, Ravva MK, Mishra BK, Subramanian V, Sathyamurthy N (2018) Co-operativity in non-covalent interactions in ternary complexes: a comprehensive electronic structure theory based investigation. J Mol Model 24:258

    Article  PubMed  Google Scholar 

  52. 52.

    Hayashi S, Tsubomoto Y, Nakanishi W (2018) Behavior of the E–E’Bonds (E, E’= S and Se) in glutathione disulfide and derivatives elucidated by quantum chemical calculations with the quantum theory of atoms-in-molecules approach. Molecules 23:443

    Article  CAS  PubMed Central  Google Scholar 

  53. 53.

    Shainyan BA, Chipanina NN, Aksamentova TN, Oznobikhina LP, Rosentsevig GN, Rosentsevig IB (2010) Intramolecular hydrogen bonds in the sulfonamide derivatives of oxamide, dithiooxamide and biuret. FT-IR and DFT study, AIM and NBO analysis. Tetrahedron 66:8551–8556

    Article  CAS  Google Scholar 

  54. 54.

    Wu Q, Su H, Wang H, Wang H (2018) Ab initio calculations, structure, NBO and NCI analyses of XH⋯ π interactions. Chem Phys Lett 693:202–209

    Article  CAS  Google Scholar 

  55. 55.

    Esrafili MD, Sadr-Mousavi A (2017) Chalcogen bonds tuned by an N–H··· π or C–H··· π interaction: investigation of substituent, cooperativity and solvent effects. Mol Phys 115:1713–1723

    Article  CAS  Google Scholar 

  56. 56.

    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Chakraborty D, Chattaraj PK (2018) Confinement induced thermodynamic and kinetic facilitation of some Diels–Alder reactions inside a CB [7] cavitand. J Comput Chem 39:151–160

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Lefebvre C, Rubez G, Khartabil H, Boisson JC, Contreras-García J, Hénon E (2017) Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys Chem Chem Phys 19:17928–17936

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Nowroozi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bavafa, S., Nowroozi, A. & Ebrahimi, A. Quantum chemical study of the nature of interactions between the boraphosphinine and alumaphosphinine with some of the mono- and divalent cations: cation–π or cation–lone pair?. Struct Chem 30, 1887–1898 (2019). https://doi.org/10.1007/s11224-019-01320-1

Download citation

Keywords

  • Non-covalent interaction (NCI)
  • Cation–π
  • Cation–LP
  • Boraphosphinine (BP)
  • Alumaphosphinine (AlP)