Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1911–1928 | Cite as

X-ray, optical, vibrational, electrical, and DFT study of the polymorphic structure of ethylenediammonium bis iodate α-C2H10N2(IO3)2 and β-C2H10N2(IO3)2

  • Mohamed Amine Ben AbdallahEmail author
  • Alessia Bacchi
  • Antonella Parisini
  • Stefano Canossa
  • Paolo Pio Mazzeo
  • Laura Bergamonti
  • Slaheddine Kamoun
Original Research
  • 131 Downloads

Abstract

The interaction of ethylenediamine with iodic acid by the slow evaporation method at room temperature gives rise to the crystals of α-C2H10N2(IO3)2 and β-C2H10N2(IO3)2 denoted as α-EBI and β-EBI, respectively. The acentric crystal structures of both polymorphs that consist of [C2H10N2]2+ cations and [IO3] anions connected together by N–H…O hydrogen bonds are discussed and compared. The optical properties of both polymorphs were determined using UV-vis diffuse reflectance spectroscopy (DRS) showing a wide transparency windows. The DFT calculations using the mixed B3PW91/[6–31 + (d, p), LanL2Dz] basis set of optimized geometries, dipole moment (μ), polarizability (α), first static hyperpolarizability (β), and population analysis were also reported. The experimental and theoretical IR and Raman spectra were compared, and the careful and complete assignment of the vibrational motions of both compounds was undertaken with the aid of potential energy distribution (PED) analysis. DSC and AC conductivity analysis revealed that α-C2H10N2(IO3)2 and β-C2H10N2(IO3)2 undergo a first-order phase transition around 360 K. The electrical σtot (ω, T) conductivity obeyed to Jonscher’s power law and the temperature dependence of the S(T) parameter showed that the electrical conductivity of both polymorph phases might be treated using the correlated barrier hopping (CBH) model.

Keywords

Iodate salt Acentric structure Vibrational spectra Electrical Optical properties DFT 

Notes

Acknowledgements

The authors are grateful to Mr. Giovani Predieri, Mr. Pier Paolo Lottici, and Mr. Danilo Bersani for their help with the vibrational measurement. Moreover, authors wish to thank Mr. Salvatore Vantaggio and Dr. Silvio Scaravonati of the Department of Mathematical, Physical and Computer Sciences of the University of Parma for their contribution in carrying out the impedance spectroscopy measurements. In addition, the authors would like to express their deepest appreciation to Mr. Paolo Pelagatti for his warm hospitality and technical help. Last but not least, the authors would like to extend their sincere thanks especially to Mr. Davide Balestri and to all the members of the Units of Analytical Chemistry Cultural Heritage, Inorganic and Crystallography (SCVSA department, university of Parma, Italy), for their technical help and warm hospitality. Finally, the authors acknowledge also the support of the Tunisian Ministry of Higher Education and Scientific Research (LR11ES46).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11224_2019_1317_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 All crystallographic data for reported structures have been deposited at the Cambridge Crystallographic Data Centre with (deposition number: CCDC 1814341 for α-EBI and CCDC 1554555 for β-EBI). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Rood, Cambridge CB21EZ, UK (Fax: 441223336 033 e mail: deposit@ccdc.com.ac.uk). (DOCX 1707 kb)

References

  1. 1.
    Andraud C et al (1994) Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives. J Am Chem Soc 116:2094–2102CrossRefGoogle Scholar
  2. 2.
    Nakano M et al (2002) Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure-property relation in NLO responses of fractal antenna dendrimers. J Am Chem Soc 124:9648–9655CrossRefGoogle Scholar
  3. 3.
    Vijayan N et al (2006) Growth and characterization of nonlinear optical amino acid single crystal: L-alanine. Cryst Growth Des 6:2441–2445CrossRefGoogle Scholar
  4. 4.
    Sankar R et al (2008) Synthesis, growth, and characterization of nonlinear optical material l-arginine iodate crystal. Mater Lett 62:133–136CrossRefGoogle Scholar
  5. 5.
    Petrosyan AM et al (1998) Investigation of some new nonlinear optical crystals by means of NQR, IR and X-ray diffraction methods. Zeitschrift fur Naturforschung - Section A J Phys Sci 53a:528–536Google Scholar
  6. 6.
    Lucas BW (1984) Structure (neutron) of room-temperature phase III potassium iodate, KIO3. Acta Crystallogr Sect C Cryst StructCommun 40:1989–1992CrossRefGoogle Scholar
  7. 7.
    Yagi K, Umezawa S (2001) EXAFS study of phase transitions in KIO3. J Synchrotron Rad 8:803–805CrossRefGoogle Scholar
  8. 8.
    Burger A, Ramberger R (1979) On the polymorphism of pharmaceuticals and other molecular crystals. I. Mikrochim Acta 72:259–271CrossRefGoogle Scholar
  9. 9.
    Kovalska E, Kocabas C (2016) Organic electrolytes for graphene-based supercapacitor: liquid, gel or solid. Mater Today Commun 7:155–160CrossRefGoogle Scholar
  10. 10.
    Puchkovskaya GA, Tarnavski YA (1997) Phase transitions in the proton conductor NH4IO3·2HIO3. J Mol Struct 403:137–142CrossRefGoogle Scholar
  11. 11.
    Bruker AXS Inc. (2014) APEX2 suite for crystallographic software—single crystal X-ray diffractionGoogle Scholar
  12. 12.
    Sheldrick GM (2015) SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr A: Found Crystallogr 71:3–8CrossRefGoogle Scholar
  13. 13.
    Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Crystallogr 45:849–854CrossRefGoogle Scholar
  14. 14.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin J, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) GAUSSIAN09 Rev B01. Gaussian Inc, WallingfordGoogle Scholar
  15. 15.
    Frisch A, Nielson AB, Holder AJ (2000) GAUSSVIEW user manual. Gaussian Inc., PittsburghGoogle Scholar
  16. 16.
    Jamróz M H (2004) Vibrational energy distribution analysis (VEDA). Technical report, WarsawGoogle Scholar
  17. 17.
    Jamróz MH (2013) Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim Acta A Mol Biomol Spectrosc 114:220–230CrossRefGoogle Scholar
  18. 18.
    Petrosyan AM, Shishkin VA (1996) Correlation between structural, infrared and nuclear quadrupole resonance data of iodates. Z Naturforsch Sect A J Phys Sci 51:667–671Google Scholar
  19. 19.
    Petrosyan AM et al (1999) Interaction of lysine with iodic acid. Acta Crystallogr Sect B: Struct Sci 55:221–225CrossRefGoogle Scholar
  20. 20.
    Gholizadeh M et al (2011) 1,1′-(Ethane-1,2-di-yl)dipyridinium bis-(iodate). Acta Crystallogr Sect E: Struct Rep Online 67:o1614–o1615Google Scholar
  21. 21.
    Ben Abdallah MA (2018) Synthesis, crystal structure, vibrational spectra, optical and DFT study of N-(3-ammonium propyl)-1, 3 diaminopropane tris iodate dehydrate [(C6H20N3) (IO3)3·2H2O]. J Mol Struct 1171:76–86CrossRefGoogle Scholar
  22. 22.
    Ben Abdallah MA, Kamoun S (2019) Crystal structure, phase transition, electrical and optical properties of p-hydroxypyridinium iodate [C5H6NO (IO3)]2. J Mol Struct 1178:52–61CrossRefGoogle Scholar
  23. 23.
    Ben Abdallah MA et al (2019) Structure, vibrational, electrical and optical study of [C2H10N2] (IO3)2·4HIO3. J Mol Struct 1179:18–32CrossRefGoogle Scholar
  24. 24.
    Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B 41:244–247CrossRefGoogle Scholar
  25. 25.
    Saidi K, Kamoun S, Ayedi HF (2011) Synthesis and crystal structure of ethylenediammonium bis iodate tetra iodic acid: [C2H10N2] (IO3)2·4HIO3. J Chem Crystallogr 41:1258–1261CrossRefGoogle Scholar
  26. 26.
    Averbuch-Pouchot MT, Durif A, IUCr (1987) Structures of ethylenediammonium monohydrogentetraoxophosphate(V) and ethylenediammonium monohydrogentetraoxoarsenate(V). Acta Crystallogr Sect C Cryst Struct Commun 43:1894–1896CrossRefGoogle Scholar
  27. 27.
    Kamoun S, Jouini A, Daoud A (1992) Structure cristalline et etude par spectrometrie de vibration (IR et Raman) du bis(ethylenediammonium) diphosphate (NH3(CH2)2NH3)2·P2O7. J Solid State Chem 99:18–28CrossRefGoogle Scholar
  28. 28.
    Kamoun S et al (1990) Structure du tris(éthylènediammonium) bis(monohydrogénodiphosphate) dihydrate. Acta Crystallogr Sect C Cryst Struct Commun 46:420–422CrossRefGoogle Scholar
  29. 29.
    Kamoun S et al (1989) Structure of ethylenediammonium bis (dihydrogenmonophosphate). Acta Crystallogr Sect C Cryst Struct Commun 45:481–482CrossRefGoogle Scholar
  30. 30.
    Davies M, Kybett B (1963) Hydrogen-bond energies in the crystalline state. Nature 200:776–777CrossRefGoogle Scholar
  31. 31.
    Gardner K (2005) Cellref version 1.00Google Scholar
  32. 32.
    Philips-Invernizzi B, Dupont D, Cazé C (2002) Formulation of colored fiber blends from Friele’s theoretical model. Color Res Appl 27:191–198CrossRefGoogle Scholar
  33. 33.
    Schevciw O, White WB (1983) The optical absorption edge of rare earth sesquisulfides and alkaline earth-rare earth sulfides. Mater Res Bull 18:1059–1068CrossRefGoogle Scholar
  34. 34.
    Dhiab AC, Sta WS, Rzaigui M (2011) Synthesis and physico-chemical characterization of a new non-centrosymmetric organic cation iodate. J Adv Chem 7:1315–1323CrossRefGoogle Scholar
  35. 35.
    Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700CrossRefGoogle Scholar
  36. 36.
    Laury ML, Carlson MJ, Wilson AK (2012) Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets. J Comput Chem 33:2380–2387CrossRefGoogle Scholar
  37. 37.
    Durig JR, Bonner OD, Breazeale WH (1965) Raman studies of iodic acid and sodium iodate. J Phys Chem 69:3886–3892CrossRefGoogle Scholar
  38. 38.
    Nakamoto K (1979) Infrared and Raman spectra of inorganic and coordination compounds (Nakamoto, Kazuo). J Chem Educ 56:A209CrossRefGoogle Scholar
  39. 39.
    Kurtz HA, Dudis DS (1998) Quantum mechanical methods for predicting nonlinear optical properties. Rev Comput Chem 12:241–279Google Scholar
  40. 40.
    Poulsen TD, Ogilby PR, Mikkelsen KV (2001) A quantum mechanical method for calculating nonlinear optical properties of condensed phase molecules coupled to a molecular mechanics field: a quadratic multiconfigurational self-consistent-field/molecular mechanics response method. J Chem Phys 115:7843–7851CrossRefGoogle Scholar
  41. 41.
    Chemli R, Michaud F, Kamoun S (2018) Crystal structure, vibrational spectra, optical and DFT studies of poly [bis(L-methionine)-κS:O cadmium (II) di-μ-thiocyanato- κ2N:S; κ2S:N]. J Mol Struct 1166:91–101CrossRefGoogle Scholar
  42. 42.
    Sudharsana N et al (2012) Growth and characterization of anilinium hydrogen sulfate (AHS) single crystals: an organic nonlinear optical material. Spectrochim Acta A Mol Biomol Spectrosc 97:798–805CrossRefGoogle Scholar
  43. 43.
    Kulasekera E, Petrie S, Stranger R, Humphrey MG (2014) DFT calculation of static first hyperpolarizabilities and linear optical properties of metal alkynyl complexes. Organometallics 33:2434–2447CrossRefGoogle Scholar
  44. 44.
    Jonscher AK (1978) Analysis of the alternating current properties of ionic conductors. J Mater Sci 13:553–562CrossRefGoogle Scholar
  45. 45.
    Takahashi T et al (1976) Proton conduction in triethylenediamine- and hexamethylenetetramine-sulfate. J Solid State Chem 17:353–361CrossRefGoogle Scholar
  46. 46.
    Chowdhry U et al (1982) New inorganic proton conductors. Mater Res Bull 17:917–933CrossRefGoogle Scholar
  47. 47.
    Elliott SR (1977) A theory of a.c. conduction in chalcogenide glasses. Philos Mag 36:1291–1304CrossRefGoogle Scholar
  48. 48.
    Pike GE (1972) AC conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B 6:1572–1580CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Materials Engineering and Environment (LR11ES46), ENISSfax UniversitySfaxTunisia
  2. 2.Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità degli Studi di ParmaParmaItaly
  3. 3.Centro Interdipartimentale BioPharmanet (TEC)Università degli Studi di ParmaParmaItaly
  4. 4.Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversità degli Studi di ParmaParmaItaly

Personalised recommendations