Skip to main content
Log in

X-ray, optical, vibrational, electrical, and DFT study of the polymorphic structure of ethylenediammonium bis iodate α-C2H10N2(IO3)2 and β-C2H10N2(IO3)2

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The interaction of ethylenediamine with iodic acid by the slow evaporation method at room temperature gives rise to the crystals of α-C2H10N2(IO3)2 and β-C2H10N2(IO3)2 denoted as α-EBI and β-EBI, respectively. The acentric crystal structures of both polymorphs that consist of [C2H10N2]2+ cations and [IO3] anions connected together by N–H…O hydrogen bonds are discussed and compared. The optical properties of both polymorphs were determined using UV-vis diffuse reflectance spectroscopy (DRS) showing a wide transparency windows. The DFT calculations using the mixed B3PW91/[6–31 + (d, p), LanL2Dz] basis set of optimized geometries, dipole moment (μ), polarizability (α), first static hyperpolarizability (β), and population analysis were also reported. The experimental and theoretical IR and Raman spectra were compared, and the careful and complete assignment of the vibrational motions of both compounds was undertaken with the aid of potential energy distribution (PED) analysis. DSC and AC conductivity analysis revealed that α-C2H10N2(IO3)2 and β-C2H10N2(IO3)2 undergo a first-order phase transition around 360 K. The electrical σtot (ω, T) conductivity obeyed to Jonscher’s power law and the temperature dependence of the S(T) parameter showed that the electrical conductivity of both polymorph phases might be treated using the correlated barrier hopping (CBH) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Andraud C et al (1994) Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives. J Am Chem Soc 116:2094–2102

    Article  CAS  Google Scholar 

  2. Nakano M et al (2002) Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure-property relation in NLO responses of fractal antenna dendrimers. J Am Chem Soc 124:9648–9655

    Article  CAS  PubMed  Google Scholar 

  3. Vijayan N et al (2006) Growth and characterization of nonlinear optical amino acid single crystal: L-alanine. Cryst Growth Des 6:2441–2445

    Article  CAS  Google Scholar 

  4. Sankar R et al (2008) Synthesis, growth, and characterization of nonlinear optical material l-arginine iodate crystal. Mater Lett 62:133–136

    Article  CAS  Google Scholar 

  5. Petrosyan AM et al (1998) Investigation of some new nonlinear optical crystals by means of NQR, IR and X-ray diffraction methods. Zeitschrift fur Naturforschung - Section A J Phys Sci 53a:528–536

    Google Scholar 

  6. Lucas BW (1984) Structure (neutron) of room-temperature phase III potassium iodate, KIO3. Acta Crystallogr Sect C Cryst StructCommun 40:1989–1992

    Article  Google Scholar 

  7. Yagi K, Umezawa S (2001) EXAFS study of phase transitions in KIO3. J Synchrotron Rad 8:803–805

    Article  CAS  Google Scholar 

  8. Burger A, Ramberger R (1979) On the polymorphism of pharmaceuticals and other molecular crystals. I. Mikrochim Acta 72:259–271

    Article  Google Scholar 

  9. Kovalska E, Kocabas C (2016) Organic electrolytes for graphene-based supercapacitor: liquid, gel or solid. Mater Today Commun 7:155–160

    Article  CAS  Google Scholar 

  10. Puchkovskaya GA, Tarnavski YA (1997) Phase transitions in the proton conductor NH4IO3·2HIO3. J Mol Struct 403:137–142

    Article  CAS  Google Scholar 

  11. Bruker AXS Inc. (2014) APEX2 suite for crystallographic software—single crystal X-ray diffraction

  12. Sheldrick GM (2015) SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr A: Found Crystallogr 71:3–8

    Article  CAS  Google Scholar 

  13. Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Crystallogr 45:849–854

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin J, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) GAUSSIAN09 Rev B01. Gaussian Inc, Wallingford

    Google Scholar 

  15. Frisch A, Nielson AB, Holder AJ (2000) GAUSSVIEW user manual. Gaussian Inc., Pittsburgh

    Google Scholar 

  16. Jamróz M H (2004) Vibrational energy distribution analysis (VEDA). Technical report, Warsaw

  17. Jamróz MH (2013) Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim Acta A Mol Biomol Spectrosc 114:220–230

    Article  CAS  PubMed  Google Scholar 

  18. Petrosyan AM, Shishkin VA (1996) Correlation between structural, infrared and nuclear quadrupole resonance data of iodates. Z Naturforsch Sect A J Phys Sci 51:667–671

    CAS  Google Scholar 

  19. Petrosyan AM et al (1999) Interaction of lysine with iodic acid. Acta Crystallogr Sect B: Struct Sci 55:221–225

    Article  CAS  Google Scholar 

  20. Gholizadeh M et al (2011) 1,1′-(Ethane-1,2-di-yl)dipyridinium bis-(iodate). Acta Crystallogr Sect E: Struct Rep Online 67:o1614–o1615

  21. Ben Abdallah MA (2018) Synthesis, crystal structure, vibrational spectra, optical and DFT study of N-(3-ammonium propyl)-1, 3 diaminopropane tris iodate dehydrate [(C6H20N3) (IO3)3·2H2O]. J Mol Struct 1171:76–86

    Article  CAS  Google Scholar 

  22. Ben Abdallah MA, Kamoun S (2019) Crystal structure, phase transition, electrical and optical properties of p-hydroxypyridinium iodate [C5H6NO (IO3)]2. J Mol Struct 1178:52–61

    Article  CAS  Google Scholar 

  23. Ben Abdallah MA et al (2019) Structure, vibrational, electrical and optical study of [C2H10N2] (IO3)2·4HIO3. J Mol Struct 1179:18–32

    Article  CAS  Google Scholar 

  24. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B 41:244–247

    Article  Google Scholar 

  25. Saidi K, Kamoun S, Ayedi HF (2011) Synthesis and crystal structure of ethylenediammonium bis iodate tetra iodic acid: [C2H10N2] (IO3)2·4HIO3. J Chem Crystallogr 41:1258–1261

    Article  CAS  Google Scholar 

  26. Averbuch-Pouchot MT, Durif A, IUCr (1987) Structures of ethylenediammonium monohydrogentetraoxophosphate(V) and ethylenediammonium monohydrogentetraoxoarsenate(V). Acta Crystallogr Sect C Cryst Struct Commun 43:1894–1896

    Article  Google Scholar 

  27. Kamoun S, Jouini A, Daoud A (1992) Structure cristalline et etude par spectrometrie de vibration (IR et Raman) du bis(ethylenediammonium) diphosphate (NH3(CH2)2NH3)2·P2O7. J Solid State Chem 99:18–28

    Article  CAS  Google Scholar 

  28. Kamoun S et al (1990) Structure du tris(éthylènediammonium) bis(monohydrogénodiphosphate) dihydrate. Acta Crystallogr Sect C Cryst Struct Commun 46:420–422

    Article  Google Scholar 

  29. Kamoun S et al (1989) Structure of ethylenediammonium bis (dihydrogenmonophosphate). Acta Crystallogr Sect C Cryst Struct Commun 45:481–482

    Article  Google Scholar 

  30. Davies M, Kybett B (1963) Hydrogen-bond energies in the crystalline state. Nature 200:776–777

    Article  CAS  Google Scholar 

  31. Gardner K (2005) Cellref version 1.00

  32. Philips-Invernizzi B, Dupont D, Cazé C (2002) Formulation of colored fiber blends from Friele’s theoretical model. Color Res Appl 27:191–198

    Article  Google Scholar 

  33. Schevciw O, White WB (1983) The optical absorption edge of rare earth sesquisulfides and alkaline earth-rare earth sulfides. Mater Res Bull 18:1059–1068

    Article  CAS  Google Scholar 

  34. Dhiab AC, Sta WS, Rzaigui M (2011) Synthesis and physico-chemical characterization of a new non-centrosymmetric organic cation iodate. J Adv Chem 7:1315–1323

    Article  Google Scholar 

  35. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700

    Article  CAS  PubMed  Google Scholar 

  36. Laury ML, Carlson MJ, Wilson AK (2012) Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets. J Comput Chem 33:2380–2387

    Article  CAS  PubMed  Google Scholar 

  37. Durig JR, Bonner OD, Breazeale WH (1965) Raman studies of iodic acid and sodium iodate. J Phys Chem 69:3886–3892

    Article  CAS  Google Scholar 

  38. Nakamoto K (1979) Infrared and Raman spectra of inorganic and coordination compounds (Nakamoto, Kazuo). J Chem Educ 56:A209

    Article  Google Scholar 

  39. Kurtz HA, Dudis DS (1998) Quantum mechanical methods for predicting nonlinear optical properties. Rev Comput Chem 12:241–279

    CAS  Google Scholar 

  40. Poulsen TD, Ogilby PR, Mikkelsen KV (2001) A quantum mechanical method for calculating nonlinear optical properties of condensed phase molecules coupled to a molecular mechanics field: a quadratic multiconfigurational self-consistent-field/molecular mechanics response method. J Chem Phys 115:7843–7851

    Article  CAS  Google Scholar 

  41. Chemli R, Michaud F, Kamoun S (2018) Crystal structure, vibrational spectra, optical and DFT studies of poly [bis(L-methionine)-κS:O cadmium (II) di-μ-thiocyanato- κ2N:S; κ2S:N]. J Mol Struct 1166:91–101

    Article  CAS  Google Scholar 

  42. Sudharsana N et al (2012) Growth and characterization of anilinium hydrogen sulfate (AHS) single crystals: an organic nonlinear optical material. Spectrochim Acta A Mol Biomol Spectrosc 97:798–805

    Article  CAS  PubMed  Google Scholar 

  43. Kulasekera E, Petrie S, Stranger R, Humphrey MG (2014) DFT calculation of static first hyperpolarizabilities and linear optical properties of metal alkynyl complexes. Organometallics 33:2434–2447

    Article  CAS  Google Scholar 

  44. Jonscher AK (1978) Analysis of the alternating current properties of ionic conductors. J Mater Sci 13:553–562

    Article  CAS  Google Scholar 

  45. Takahashi T et al (1976) Proton conduction in triethylenediamine- and hexamethylenetetramine-sulfate. J Solid State Chem 17:353–361

    Article  CAS  Google Scholar 

  46. Chowdhry U et al (1982) New inorganic proton conductors. Mater Res Bull 17:917–933

    Article  CAS  Google Scholar 

  47. Elliott SR (1977) A theory of a.c. conduction in chalcogenide glasses. Philos Mag 36:1291–1304

    Article  CAS  Google Scholar 

  48. Pike GE (1972) AC conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B 6:1572–1580

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Giovani Predieri, Mr. Pier Paolo Lottici, and Mr. Danilo Bersani for their help with the vibrational measurement. Moreover, authors wish to thank Mr. Salvatore Vantaggio and Dr. Silvio Scaravonati of the Department of Mathematical, Physical and Computer Sciences of the University of Parma for their contribution in carrying out the impedance spectroscopy measurements. In addition, the authors would like to express their deepest appreciation to Mr. Paolo Pelagatti for his warm hospitality and technical help. Last but not least, the authors would like to extend their sincere thanks especially to Mr. Davide Balestri and to all the members of the Units of Analytical Chemistry Cultural Heritage, Inorganic and Crystallography (SCVSA department, university of Parma, Italy), for their technical help and warm hospitality. Finally, the authors acknowledge also the support of the Tunisian Ministry of Higher Education and Scientific Research (LR11ES46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Amine Ben Abdallah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary material 1

All crystallographic data for reported structures have been deposited at the Cambridge Crystallographic Data Centre with (deposition number: CCDC 1814341 for α-EBI and CCDC 1554555 for β-EBI). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Rood, Cambridge CB21EZ, UK (Fax: 441223336 033 e mail: deposit@ccdc.com.ac.uk). (DOCX 1707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Abdallah, M.A., Bacchi, A., Parisini, A. et al. X-ray, optical, vibrational, electrical, and DFT study of the polymorphic structure of ethylenediammonium bis iodate α-C2H10N2(IO3)2 and β-C2H10N2(IO3)2. Struct Chem 30, 1911–1928 (2019). https://doi.org/10.1007/s11224-019-01317-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01317-w

Keywords

Navigation