Skip to main content
Log in

Conjugated prototropic and ring opening rearrangements in Schiff base derivatives of formyl functionalized 2-oxaindane series spiropyran: synthesis, NMR, IR, UV/Vis, and DFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Condensation reaction products of formyl derivative of the 2-oxaindane series spiropyran (7-hydroxy-3′,3′-dimethyl-3’H-spiro [chromene-2,1′-isobenzofuran]-8-carbaldehyde) with several 2-amino-4-R-phenols (R = H, tBu, Сl, NO2) were synthesized and studied with the help of IR, UV/Vis, and NMR spectroscopy. It was shown that in contrast with mother spiropyran existing in closed spiro-form, all the compounds in the solution (DMSO, acetonitrile) and in solid state exist in thermodynamically stable merocyanine keto-enamine tautomeric form due to migration of the proton of 7-hydroxy group to azomethine nitrogen, conjugated with electrocyclic opening of the spirounit in the non-stable Schiff bases. In DMSO solution of merocyanine keto-enamines (R = H, tBu, Сl), dynamic equilibrium of Z,E-isomers in respect to C=C-N exocyclic double bond is observed (of which Z-one is the major component); in case of R = NO2, two additional isomers are registered. Upon protonation, strong absorption bands with maxima at the 580–590-nm spectral region are developed, while second protonation leads to hypsochromic shift of the longest wavelength absorption band to ca. 480 nm. Experimental results are supported with the DFT quantum chemical modeling of possible isomers of the obtained substances and their spectral properties (B3LYP/6-311++G(d,p) level of theory for geometry optimizations and spectra modeling).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Organic Photochromes AV (1990) Eltsov. Consultants Bureau, New York, p 280

    Google Scholar 

  2. Berkovic G, Krongauz V, Weiss V (2000) Spiropyrans and spirooxazines for memories and switches. Chem Rev 100:1741–1754

    Article  CAS  PubMed  Google Scholar 

  3. Photochromism (2003) In: Durr H, Bouas-Laurent H (eds) Molecules and systems: molecules and systems. Elsevier, Amsterdam, p 1218

    Google Scholar 

  4. Hong Y, Zhang P, Wang H, Yu M, Gao Y, Chen J (2018) Photoswitchable AIE nanoprobe for lysosomal hydrogen sulfide detection and reversible dual-color imaging. Sensors Actuators B Chem 272:340–347

    Article  CAS  Google Scholar 

  5. Williams DE, Martin CR, Dolgopolova EA, Swifton A, Godfrey DC, Ejegbavwo OA, Pellechia PJ, Smith MD, Shustova NB (2018) Flipping the switch: fast photoisomerization in a confined environment. J Am Chem Soc 140:7611–7622

    Article  CAS  PubMed  Google Scholar 

  6. Minkin VI (2008) Bistable organic, organometallic, and coordination compounds for molecular electronics and spintronics. Russ Chem Bull 57:687–717

    Article  CAS  Google Scholar 

  7. Minkin VI (2013) Light-controlled molecular switches based on bistable spirocyclic organic and coordination compounds. Russ Chem Rev 82:1

    Article  CAS  Google Scholar 

  8. Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43:148–184

    Article  CAS  PubMed  Google Scholar 

  9. Fihey A, Perrier A, Browne WR, Jacquemin D (2015) Multiphotochromic molecular systems. Chem Soc Rev 44:3719–3759

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz HA, Ruschewitz U, Heinke L (2018) Smart nanoporous metal–organic frameworks by embedding photochromic molecules—state of the art and future perspectives. Photochem Photobiol Sci 17:864–873

    Article  CAS  PubMed  Google Scholar 

  11. Joseph G, Pichardo J, Chen G (2010) Reversible photo-/thermoresponsive structured polymer surfaces modified with a spirobenzopyran-containing copolymer for tunable wettability. Analyst 135:2303–2308

    Article  CAS  PubMed  Google Scholar 

  12. Kimura K, Nakahara Y (2009) Analytical and separation chemistry by taking advantage of organic photochromism combined with macrocyclic chemistry. Anal Sci 25:9–20

    Article  CAS  PubMed  Google Scholar 

  13. Shao N, Jin JY, Wang H, Zhang Y, Yang RH, Chan WH (2008) Tunable photochromism of spirobenzopyran via selective metal ion coordination: an efficient visual and ratioing fluorescent probe for divalent copper ion. Anal Chem 80:3466–3475

    Article  CAS  PubMed  Google Scholar 

  14. Sahoo PR, Prakash K, Kumar S (2018) Light controlled receptors for heavy metal ions. Coord Chem Rev 357:18–49

    Article  CAS  Google Scholar 

  15. Lukyanov BS, Lukyanova MB (2005) Spiropyrans: synthesis, properties, and application. (Review). Chem Heterocycl Compd 41:281–311

    Article  CAS  Google Scholar 

  16. Minkin VI (2004) Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem Rev 104:2751–2776

    Article  CAS  PubMed  Google Scholar 

  17. Aldoshin SM, Lokshin VA, Rezonov AN, Volbushko NV, Shelepin NE, Knyazhanskii MI, Atovmyan LO, Minkin VI (1987) Structures and photo- and thermochromic properties of spiropyrans of the 2-oxaindan series with polycondensed chromene fragments. Chem Heterocycl Compd 23:614–624

    Article  Google Scholar 

  18. Paramonov SV, Lokshin V, Fedorova OA (2011) Spiropyran, chromene or spirooxazine ligands: insights into mutual relations between complexing and photochromic properties. J Photochem Photobiol C: Photochem Rev 12:209–236

    Article  CAS  Google Scholar 

  19. Bianchi A, Delgado-Pinar E, García-España E, Giorgi C, Pina F (2014) Highlights of metal ion-based photochemical switches. Coord Chem Rev 260:156–215

    Article  CAS  Google Scholar 

  20. Guerchais V, Ordronneau L, Le Bozec H (2010) Recent developments in the field of metal complexes containing photochromic ligands: modulation of linear and nonlinear optical properties. Coord Chem Rev 254:2533–2545

    Article  CAS  Google Scholar 

  21. Kume S, Nishihara H (2007) Metal-based photoswitches derived from photoisomerization. In: Yam VWW (ed) Photofunctional transition metal complexes. Springer, Berlin, pp 79–112

    Google Scholar 

  22. Bulanov AO, Shcherbakov IN, Tupolova YP, Popov LD, Lukov VV, Kogan VA, Belikov PA (2009) A novel chelatofore functionalized spiropyran of the 2-oxaindane series. Acta Crystallogr C C65:o618–o620

    Article  CAS  Google Scholar 

  23. Bulanov A, Shcherbakov IN, Popov LD, Shasheva EY, Belikov PA, Starikova ZA (2011) Novel hydrazone derivatives of 7-hydroxy-3′,3′-dimethyl-3'H-spiro[chromene-2,1′-isobenzofuran]-8-carbaldehyde. Acta Crystallogr C 67:o85–o88

    Article  CAS  PubMed  Google Scholar 

  24. Popov LD, Shcherbakov IA, Bulanov AO, Shasheva EY, Tkachenko YN, Kobeleva OI, Vyalova TM, Barachevskii VA (2012) Synthesis, photochromic properties, and complex formation with metal ions of hydrazones based on a spiropyran of oxaindane series. Russ J Gen Chem 82:1432–1437

    Article  CAS  Google Scholar 

  25. Popov LD, Bulanov AO, Raspopova EA, Morozov AN, Scherbakov IN, Kobeleva OI, Valova TM, Barachevskii VA (2013) Synthesis of new spiropyranes and study of the effect of the nature of substituents on their photochromism and complexation. Russ J Gen Chem 83:1111–1116

    Article  CAS  Google Scholar 

  26. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.B. G. Scalmani, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, , O.K. Y. Honda, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision A.02 Gaussian, Inc., Wallingford, 2009

    Google Scholar 

  27. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  28. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  30. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  31. Andersson MP, Uvdal P (2005) New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p). J Phys Chem A 109:2937–2941

    Article  CAS  PubMed  Google Scholar 

  32. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  33. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  34. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  35. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509

    Article  CAS  Google Scholar 

  36. Wojtyk JTC, Wasey A, Xiao N-N, Kazmaier PM, Hoz S, Yu C, Lemieux RP, Buncel E (2007) Elucidating the mechanisms of acidochromic spiropyran-merocyanine interconversion. J Phys Chem A 111:2511–2516

    Article  CAS  PubMed  Google Scholar 

  37. Genovese ME, Colusso E, Colombo M, Martucci A, Athanassiou A, Fragouli D (2017) Acidochromic fibrous polymer composites for rapid gas detection. J Mater Chem A 5:339–348

    Article  CAS  Google Scholar 

  38. Aakeroy CB, Hurley EP, Desper J, Natali M, Douglawi A, Giordani S (2010) The balance between closed and open forms of spiropyrans in the solid state. CrystEngComm 12:1027–1033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Spectral data were obtained on the equipment of Joint Resource Centre “Molecular Spectroscopy.” DFT calculations were performed at JRC “High-performance calculations” of Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor N. Shcherbakov.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, I.N., Bulanov, A.O., Revinskii, Y.V. et al. Conjugated prototropic and ring opening rearrangements in Schiff base derivatives of formyl functionalized 2-oxaindane series spiropyran: synthesis, NMR, IR, UV/Vis, and DFT study. Struct Chem 30, 1381–1393 (2019). https://doi.org/10.1007/s11224-019-01295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01295-z

Keywords

Navigation