Structure and reactivity of gold cluster protected by triphosphine ligands: DFT study


The structure and reactivity of rhombic Au4 cluster protected by bis(dimethylphosphinomethyl) and phenylacetylide ligands towards CO and O2 were studied in scalar-relativistic DFT/PBE approach. The cluster is inert to noticeable CO binding or activation, while it reacts with O2 and forms peroxide [O2Au4(dmmp)2(С ≡ CCH3)2]2+ complexes. The CO oxidation on the cluster was simulated. According to the calculation and analysis of different pathways of reaction, the Au–P fragments of the cluster are the most probable active sites. The protected gold clusters are predicted to be promising heterogeneous catalysts in CO oxidation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Walter M, Akola J, Lopez-Acevedo O et al (2008) A unified view of ligand-protected gold clusters as superatom complexes. Proc Natl Acad Sci 105:9157–9162.

    Article  PubMed  Google Scholar 

  2. 2.

    Häkkinen H, Walter M, Grönbeck H (2006) Divide and protect: capping gold nanoclusters with molecular gold−thiolate rings. J Phys Chem B 110:9927–9931.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Häkkinen H (2008) Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem Soc Rev 37:1847.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Tian S, Siu F-M, Kui SCF et al (2011) Anticancer gold(i)–phosphine complexes as potent autophagy-inducing agents. Chem Commun 47:9318.

    Article  CAS  Google Scholar 

  5. 5.

    Li L, Gao Y, Li H et al (2013) CO oxidation on TiO2 (110) supported subnanometer gold clusters: size and shape effects. J Am Chem Soc 2:19336–19346

    Article  CAS  Google Scholar 

  6. 6.

    Muniz-miranda F, Menziani MC, Pedone A (2014) On the opto-electronic properties of phosphine and thiolate-protected undecagold nanoclusters. Phys Chem Chem Phys 16:18749–18758.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Turner M, Golovko VB, Vaughan OPH et al (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981–983.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Wang Y, Wan XK, Ren L et al (2016) Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J Am Chem Soc 138:3278–3281.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Chem JM, Zhu Y, Qian H, Jin R (2011) Catalysis opportunities of atomically precise gold nanoclusters. 6793–6799. doi:

  10. 10.

    Choudhary TV, Goodman DW (2002) Oxidation catalysis by supported gold nano-clusters. Top Catal 21:25–34

    Article  CAS  Google Scholar 

  11. 11.

    Wu Z, Hu G, Jiang DE et al (2016) Diphosphine-protected Au22 nanoclusters on oxide supports are active for gas-phase catalysis without ligand removal. Nano Lett 16:6560–6567.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Chusuei CC, Lai X, Davis KA et al (2001) A nanoscale model catalyst preparation: solution deposition of phosphine-stabilized gold clusters onto a planar TiO2(110) support. Langmuir 17:4113–4117.

    Article  CAS  Google Scholar 

  13. 13.

    Lu Y, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41:3594–3623.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Li G, Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res 46:1749–1758.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Häkkinen H (2012) Ligand-protected gold nanoclusters as superatoms—insights from theory and computations. Frontiers of Nanoscience 3:129–157.

  16. 16.

    Yuan Y, Asakura K, Wan H et al (1996) Preparation of supported gold catalysts from gold complexes and their catalytic activities for CO oxidation. Catal Letters 42:15–20.

    Article  CAS  Google Scholar 

  17. 17.

    Tsukuda T (2012) Toward an atomic-level understanding of size-specific properties of protected and stabilized gold clusters. Bull Chem Soc Jpn:151–168, 168

  18. 18.

    Boča R (1994) Tetrahedral gold–phosphine clusters: a relativistic molecular orbital study. J Chem Soc Dalton Trans 2061–2064. doi:

  19. 19.

    Fresch B, Hanozin E, Dufour F, Remacle F (2012) Interplay of structural and electronic stabilizing factors in neutral and cationic phosphine protected au 13 clusters. Eur Phys J D 66.

  20. 20.

    Phanopoulos A, Long NJ, Miller PW (2017) Triphosphine ligands: coordination chemistry and recent catalytic applications. In: Mingos D (eds) The Chemical Bond III. Structure and Bonding, vol 171. Springer, Cham.

  21. 21.

    Pichugina DA, Kuz’menko NE, Shestakov AF (2015) Ligand-protected gold clusters: the structure, synthesis and applications. Russ Chem Rev 84:1114–1144.

    Article  CAS  Google Scholar 

  22. 22.

    Caragheorgheopol A, Chechik V (2008) Mechanistic aspects of ligand exchange in au nanoparticles. Phys Chem Chem Phys 10:5029–5041.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Negishi Y, Kurashige W, Niihori Y, Nobusada K (2013) Toward the creation of stable, functionalized metal clusters. Phys Chem Chem Phys 15:18736.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Pettibone JM, Hudgens JW (2011) Gold cluster formation with phosphine ligands : etching as a size-selective synthetic pathway for small clusters ? ASC Nano 5:2989–3002

    Article  CAS  Google Scholar 

  25. 25.

    Hainfeld JF, Powell RD, Furuya FR (2002) Microscopic uses of nanogold. In: Gerhard W. Hacker (eds) Gold and silver staining: techniques in molecular Morphology. CRC Press, Boca-Raton

  26. 26.

    Schmid G, Pfeil R, Boese R et al (1981) Au55[P(C6H5)3]12Cl6 — ein Goldcluster ungewöhnlicher Größe. Chem Ber 114:3634–3642.

    Article  CAS  Google Scholar 

  27. 27.

    Pei Y, Shao N, Gao Y, Zeng XC (2010) Investigating active site of gold nanoparticle Au55(PPh3)12Cl6 in selective oxidation. ASC Nano 4:2009–2020.

    Article  CAS  Google Scholar 

  28. 28.

    Kilmartin J, Sarip R, Grau-Crespo R et al (2012) Following the creation of active gold nanocatalysts from phosphine-stabilized molecular clusters. ACS Catal 2:957–963.

    Article  CAS  Google Scholar 

  29. 29.

    Lopez-Acevedo O, Kacprzak KA, Akola J, Häkkinen H (2010) Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nat Chem 2:329–334.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Li G, Jin R (2014) Gold nanocluster-catalyzed semihydrogenation: a unique activation pathway for terminal alkynes. J Am Chem Soc 136:11347–11354.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Chen Y, Liu C, Abroshan H et al (2016) Phosphine/phenylacetylide-ligated Au clusters for multicomponent coupling reactions. J Catal 340:287–294.

    Article  CAS  Google Scholar 

  32. 32.

    Adnan RH, Andersson GG, Polson MIJ et al (2015) Factors influencing the catalytic oxidation of benzyl alcohol using supported phosphine-capped gold nanoparticles. Catal Sci Technol 5:1323–1333.

    Article  CAS  Google Scholar 

  33. 33.

    Shivhare A, Chevrier DM, Purves RW, Scott RWJ (2013) Following the thermal activation of Au25(SR)18 clusters for catalysis by X-ray absorption spectroscopy. J Phys Chem C 117:20007–20016.

    Article  CAS  Google Scholar 

  34. 34.

    Duan Y, Li Z, Li Y et al (2017) New insight of the Mars-van Krevelen mechanism of the CO oxidation by gold catalyst on the ZnO(101) surface. Comput Theor Chem 1100:28–33.

    Article  CAS  Google Scholar 

  35. 35.

    Peng S-L, Gan L-Y, Tian R-Y, Zhao Y-J (2011) Theoretical study of CO adsorption and oxidation on the gold–palladium bimetal clusters. Comput Theor Chem 977:62–68.

    Article  CAS  Google Scholar 

  36. 36.

    Zhang W, Huang W, Yang J (2015) Theoretical investigation of gold based model catalysts. Sci China Chem 58:565–573.

    Article  CAS  Google Scholar 

  37. 37.

    Pichugina DA, Polynskaya YG, Kuz’menko NE (2016) Spin and structural features in oxygen dissociation on tetrahedral Ag 20 and Ag 19 Au clusters. Phys Chem Chem Phys 1–3. doi:

  38. 38.

    Beletskaya AV, Pichugina DA, Shestakov AF, Kuz’menko NE (2013) Formation of H2O2 on Au20 and Au19Pd clusters: understanding the structure effect on the atomic level. J Phys Chem A 117:6817–6826.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78:1396–1396.

    Article  CAS  Google Scholar 

  40. 40.

    Schwerdtfeger P (2002) Relativistic effects in properties of gold. Heteroat Chem 13:578–584.

    Article  CAS  Google Scholar 

  41. 41.

    Haberlen OD, Chung SC, Rosh N (1994) Relativistic density-functional studies of naked and ligated gold clusters. Int J Quantum Chem 52:595–610.

    Article  Google Scholar 

  42. 42.

    Laikov DN (2005) A new class of atomic basis functions for accurate electronic structure calculations of molecules. 416:116–120. doi:

  43. 43.

    Polynskaya YG, Pichugina DA, Kuz’menko NE (2015) Correlation between electronic properties and reactivity toward oxygen of tetrahedral gold–silver clusters. Comput Theor Chem 1055:61–67.

    Article  CAS  Google Scholar 

  44. 44.

    Pichugina DA, Nikolaev SA, Mukhamedzyanova DF, Kuz’menko NE (2014) Quantum-chemical modeling of ethylene and acetylene adsorption on gold clusters. Russ J Phys Chem A 88:959–964.

    Article  CAS  Google Scholar 

  45. 45.

    Golosnaya MN, Pichugina DA, Oleinichenko AV, Kuz’menko NE (2017) Quantum-chemical study of the effect of ligands on the structure and properties of gold clusters. Russ J Phys Chem A 91:346–350.

    Article  CAS  Google Scholar 

  46. 46.

    Häkkinen H, Abbet S, Sanchez A et al (2003) Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew Chemie Int Ed 42:1297–1300.

    Article  Google Scholar 

  47. 47.

    Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218.

    Article  CAS  Google Scholar 

  48. 48.

    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161.

    Article  CAS  Google Scholar 

  49. 49.

    Laikov DN, Ustynyuk YA (2005) PRIRODA-04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ Chem Bull 54:820–826.

    Article  CAS  Google Scholar 

  50. 50.

    Valiev M, Bylaska EJ, Govind N et al (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489.

    Article  CAS  Google Scholar 

  51. 51.

    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104.

    Article  CAS  Google Scholar 

  52. 52.

    Sadovnichy V, Tikhonravov A, Voevodin VI et al (2013) “Lomonosov”: supercomputing at Moscow State University. In: Jeffrey S. Vetter (eds) Contemporary high performance computing: from Petascale toward Exascale. Boca Raton, United States

  53. 53.

    Dau TM, Chen Y, Karttunen AJ (2014) Tetragold ( I ) complexes : solution isomerization and tunable solid-state luminescence. Inorg Chem 53:12720–12731.

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Pr A, Ivanov SA, Arachchige I, Aikens CM (2011) Density functional analysis of geometries and electronic structures of gold-phosphine clusters . The case of Au4(PR3)42. J Phys Chem A 115:8017–8031.

    Article  CAS  Google Scholar 

  55. 55.

    Wang XF, Andrews L (2001) Precious metal−molecular oxygen complexes: neon matrix infrared spectra and density functional calculations for M(O2), M(O2)2 (M = Pd, Pt, Ag, Au). J Phys Chem A 105:5812–5822.

    Article  CAS  Google Scholar 

  56. 56.

    Wang ZY, Zhang TL, Li QH et al (2016) Possible reasons that catalytic reactivity towards low-temperature CO oxidation has not been found in Au3- cluster. Comput Theor Chem 1085:75–81.

    Article  CAS  Google Scholar 

  57. 57.

    Fukui K (1982) The role of frontier orbitals in chemical reactions (nobel lecture)**. Angew Chem Int Ed Engl 21:801–876.

    Article  Google Scholar 

  58. 58.

    Ohkawa T, Kuramoto K (2016) Theoretical study of CO and O 2 adsorption and CO oxidation on linear-shape gold molecules (LGM n ) (n=2, 4, 8, 16, and 24). Cit. AIP Adv 6:1–15.

    Article  CAS  Google Scholar 

  59. 59.

    Xu H, Xu C-Q, Cheng D, Li J (2017) Identification of activity trends for CO oxidation on supported transition-metal single-atom catalysts. Catal Sci Technol 7:5860–5871.

    Article  CAS  Google Scholar 

Download references


The present work was supported by the Russian Foundation for Basic Research Grant N 17-03-00962.

Author information



Corresponding author

Correspondence to D. A. Pichugina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golosnaya, M.N., Pichugina, D.A. & Kuz’menko, N.E. Structure and reactivity of gold cluster protected by triphosphine ligands: DFT study. Struct Chem 30, 501–507 (2019).

Download citation


  • Gold clusters
  • Ligands
  • Density functional theory
  • O2
  • CO
  • Catalysis
  • CO oxidation