Discovery of novel chemotypes for competitive AMPA receptor antagonists as potential antiepileptic agents through structure-based virtual screening of natural products library


Competitive AMPA receptor antagonists serve as the promising and validated strategy towards the development of novel antiepileptic agents. For this purpose, the structure-based virtual screening approach on library of natural compounds led to the discovery of 11 novel diverse competitive AMPA receptor antagonists with better docking and dG bind scores than the co-crystallized ligand. Validation of the screening protocol was accomplished at three levels like superposition, enrichment, and simulation studies. Involvement of the crucial amino acid interactions such as Thr91 and Arg96 involved in the binding of the co-crystallized ligand was set as the basic criterion for selecting hits on the basis of the ligand–protein interactions. The topmost hit with best dG bind score was subjected to simulation studies, quantum mechanics, and hit optimization study. Computational models developed through validated virtual screening protocol with better pharmacokinetic performance provides in silico evidence towards the development of better therapeutic regime of epilepsy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Catarzi D, Colotta V, Varano F (2007) Competitive AMPA receptor antagonists. Med Res Rev 27(2):239–278

    CAS  Google Scholar 

  2. 2.

    Meldrum BS, Rogawski MA (2007) Molecular targets for antiepileptic drug development. Neurotherapeutics 4(1):18–61

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Loscher W, Klitgaard H, Twyman RE, Schmidt D (2013) New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 12(10):757–776

    PubMed  Google Scholar 

  4. 4.

    Malik R, Mehta P, Srivastava S, Choudhary BS, Sharma M (2016) Structure-based screening, ADMET profiling, and molecular dynamic studies on mGlu2 receptor for identification of newer antiepileptic agents. J Biomol Struct Dyn 35(16):3433–3448

    PubMed  Google Scholar 

  5. 5.

    Sarro GD, Gitto R, Russo E, Ibbadu GF, Barreca ML, Luca LD, Chimirri A (2005) AMPA receptor antagonists as potential anticonvulsant drugs. Curr Top Med Chem 5(1):31–42

    Google Scholar 

  6. 6.

    Kaczor AA, Matosiuk D (2010) Molecular structure of ionotropic glutamate receptors. Curr Med Chem 17(24):2608–2635

    CAS  PubMed  Google Scholar 

  7. 7.

    Rogawski MA (2011) Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr 11(2):56–63

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Russo E, Gitto R, Citraro R, Chimirri A, De Sarro G (2012) New AMPA antagonists in epilepsy. Expert Opin Investig Drugs 21(9):1371–1389

    CAS  PubMed  Google Scholar 

  9. 9.

    Desos P, Lepagnol JM, Morain P, Lestage P, Cordi AA (1996) Structure-activity relationships in a series of 2(1H)-quinolones bearing different acidic function in the 3-position: 6,7-dichloro-2(1H)-oxoquinoline-3-phosphonic acid, a new potent and selective AMPA/kainate antagonist with neuroprotective properties. J Med Chem 39(1):197–206

    CAS  PubMed  Google Scholar 

  10. 10.

    Canton T, Bohme GA, Boireau A, Bordier F, Mignani S, Jimonet P, Jahn G, Alavijeh M, Stygall J, Roberts S, Brealey C, Vuilhorgne M, Debono MW, Guern SL, Laville M, Briet D, Roux M, Stutzmann JM, Pratt J (2001) RPR 119990, a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid antagonist: synthesis, pharmacological properties, and activity in an animal model of amyotrophic lateral sclerosis. J Pharmacol Exp Ther 299(1):314–322

    CAS  PubMed  Google Scholar 

  11. 11.

    Mignani S, Bohme GA, Birraux G, Boireau A, Jimonet P, Damour D, Genevois-Borella A, Debono MW, Pratt J, Vuilhorgne M, Wahl F, Stutzmann JM (2002) 9-Carboxymethyl-5H,10H-imidazo[1,2-a]indeno[1,2-e]pyrazin-4-one-2-carbocylic acid (RPR117824): selective anticonvulsive and neuroprotective AMPA antagonist. Bioorg Med Chem 10(5):1627–1637

    CAS  PubMed  Google Scholar 

  12. 12.

    Koller M, Lingenhoehl K, Schmutz M, Vranesic IT, Kallen J, Auberson YP, Carcache DA, Mattes H, Ofner S, Orain D, Urwyler S (2011) Quinazolinedione sulfonamides: a novel class of competitive AMPA receptor antagonists with oral activity. Bioorg Med Chem Lett 21(11):3358–3361

    CAS  PubMed  Google Scholar 

  13. 13.

    Orain D, Ofner S, Koller M, Carcache DA, Froestl W, Allgeier H, Rasetti V, Nozulak J, Mattes H, Soldermann N, Floersheim P, Desrayaud S, Kallen J, Lingenhoehl K, Urwyler S (2012) 6-Amino quinazolinedione sulfonamides as orally active competitive AMPA receptor antagonists. Bioorg Med Chem Lett 22(2):996–999

    CAS  PubMed  Google Scholar 

  14. 14.

    Stutzmann JM, Bohme GA, Boireau A, Damour D, Debono MW, Genevois-Borella A, Imperato A, Jimonet P, Pratt J, Randle JCR, Ribeill Y, Vuilhorgne M, Mignani S (2000) 4,10-Dihydro-4-oxo-4H-imidazo[1,2-a]indeno[1,2-e]pyrazin-2-carboxylic acid derivatives: highly potent and selective AMPA receptors antagonists with in vivo activity. Bioorg Med Chem Lett 10(10):1133–1137

    CAS  PubMed  Google Scholar 

  15. 15.

    Maestro, Version 10.4 (Epik Version 3.4; Impact Version 6.9; Prime Version 4.2, Glide Version 6.9; LigPrep, Version 3.6; QikProp, Version 4.6). (2015) Schrodinger, LLC, New York

  16. 16.

    Forge, Version, Cresset, Litlington, Cambridgeshire (UK) Accessed 10 Dec. 2017

  17. 17.

    Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP (2012) Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci 3(1):50–68

    CAS  PubMed  Google Scholar 

  19. 19.

    (2015) SciFinder™, Columbus (OH), American Chemical Society. Accessed 10 Jan. 2018

  20. 20.

    Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2011) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(D1):D1100–D1107

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Cheeseright T, Mackey M, Rose S, Vinter A (2006) Molecular field Extrema as descriptors of biological activity: definition and validation. J Chem Inf Model 46(2):665–676

    CAS  PubMed  Google Scholar 

  22. 22.

    Rodrigues T, Reker D, Schneider P, Schneider G (2016) Counting on natural products for drug design. Nat Chem 8(6):531–541

    CAS  PubMed  Google Scholar 

  23. 23.

    Slon-Usakiewicz J, inventor; Waratah Pharmaceuticals Inc., assignee (2007) Screening methods for amyloid beta modulators. United States Patent US 2,007,134,449

Download references


Authors are grateful to the Central University of Rajasthan for providing licensed Schrodinger molecular modeling software.


This study was funded by the Department of Science and Technology (INSPIRE fellowship Grant No. DST/INSPIRE/Fellowship/2014/241 and DST-Rajasthan Grant No. L7(3)S&T/R&D/2016/2616).

Author information



Corresponding author

Correspondence to Ruchi Malik.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehta, P., Srivastava, S., Sharma, M. et al. Discovery of novel chemotypes for competitive AMPA receptor antagonists as potential antiepileptic agents through structure-based virtual screening of natural products library. Struct Chem 30, 1159–1172 (2019).

Download citation


  • Structure-based screening
  • AMPA receptor antagonists
  • ROC
  • Quantum mechanics
  • Epilepsy
  • Molecular dynamics