Structural Chemistry

, Volume 30, Issue 3, pp 1067–1077 | Cite as

A computational study on hydrogenation of CO2, catalyzed by a bridged B/N frustrated Lewis pair

  • Manas Ghara
  • Pratim K. ChattarajEmail author
Original Research


A DFT-based computational study has been performed on the hydrogenation of CO2, catalyzed by a bridged FLP. Formic acid might be formed in two possible pathways as revealed by this study. In one way, the Lewis basic center of the FLP activates H2, and the Lewis acidic center activates CO2 simultaneously in the first step of the reaction. Alternatively, the Lewis basic center of the FLP activates CO2, and the Lewis acidic center activates H2. The simultaneous activation of CO2 and H2 through single TS is confirmed by NBO analysis. Free energy profiles are also generated for both the possible pathways in solvent phase. It appears from these profiles that the first step, i.e., simultaneous activation of CO2 and H2, is the rate determining for both the reaction pathways. A significant amount of barrier height is reduced in comparison to that in the corresponding uncatalyzed reaction as observed in these profiles. The nature of donor-acceptor interactions present in the transition state geometries is further analyzed by energy decomposition analysis (EDA) methods. The EDA analysis shows that the HOMO of the FLP donates electron density to the LUMO of H2, the HOMO of H2 donates electron density to the LUMO of CO2, and several occupied MOs of CO2 donate electron density to the LUMO of FLP at the TS geometry.


Hydrogenation of CO2 Frustrated Lewis pair Boron amidinates EDA-NOCV Transition state 


Funding information

PKC would like to thank DST, New Delhi for the J. C. Bose National Fellowship. MG thanks CSIR, New Delhi for his senior research fellowship.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interest.

Supplementary material

11224_2018_1264_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 29 kb)


  1. 1.
    Pachauri KR, Reisinger A (2007) IPCC: Climate Change 2007: Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, p 104. Accessed 5 Oct 2018
  2. 2.
    Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A 106:1704–1709CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tollefson J (2009) Nature’s low-down on the world’s biggest climate summit. Nature.
  4. 4.
    Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387CrossRefGoogle Scholar
  5. 5.
    Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA et al (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101:953–996CrossRefPubMedGoogle Scholar
  6. 6.
    Tanaka R, Yamashita M, Nozaki K (2009) Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J Am Chem Soc 131:14168–14169CrossRefPubMedGoogle Scholar
  7. 7.
    Balaraman E, Gunanathan C, Zhang J, Shimon LJW, Milstein D (2011) Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat Chem 3:609–614CrossRefPubMedGoogle Scholar
  8. 8.
    Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller MA (2010) Well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew Chem Int Ed 49:39777–39780Google Scholar
  9. 9.
    Huff CA, Sanford MS (2013) Catalytic CO2 hydrogenation to formate by a ruthenium pincer complex. ACS Catal 3:2412–2416CrossRefGoogle Scholar
  10. 10.
    Chakraborty S, Zhang J, Krause JA, Guan H (2010) An efficient nickel catalyst for the reduction of carbon dioxide with a borane. J Am Chem Soc 132:8872–8873CrossRefPubMedGoogle Scholar
  11. 11.
    Wesselbaum S, von Stein T, Klankermayer J, Leitner W (2012) Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium-phosphine catalyst. Angew Chem Int Ed 51:7499–7502CrossRefGoogle Scholar
  12. 12.
    Bontemps S, Sabo-Etienne S (2013) Trapping formaldehyde in the homogeneous catalytic reduction of carbon dioxide. Angew Chem Int Ed 52:10253–10255CrossRefGoogle Scholar
  13. 13.
    Bontemps S, Vendier L, Sabo-Etienne S (2014) Ruthenium catalyzed reduction of carbon dioxide to formaldehyde. J Am Chem Soc 136:4419–4425CrossRefPubMedGoogle Scholar
  14. 14.
    Park S, Bezier D, Brookhart M (2012) An efficient iridium catalyst for reduction of carbon dioxide to methane with trialkylsilanes. J Am Chem Soc 134:11404–11407CrossRefPubMedGoogle Scholar
  15. 15.
    Berkefeld A, Piers WE, Parvez M, Castro L, Maron L, Eisenstein O (2013) Decamethylscandocinium-hydrido-(perfluorophenyl)-borate: fixation and tandem tris(perfluorophenyl) borane catalysed deoxygenative hydrosilation of carbon dioxide. Chem Sci 4:2152–2162CrossRefGoogle Scholar
  16. 16.
    Ge H, Jing Y, Yang X (2016) Computational design of cobalt catalysts for hydrogenation of carbon dioxide and dehydrogenation of formic acid. Inorg Chem 55(23):12179–12184CrossRefPubMedGoogle Scholar
  17. 17.
    Yang X (2015) Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide. Chem Commun 51:13098–13101CrossRefGoogle Scholar
  18. 18.
    Berkessel A, Schubert TJS, Mueller TN (2002) Hydrogenation without a transition-metal catalyst: on the mechanism of the base-catalyzed hydrogenation of ketones. J Am Chem Soc 124:8693–8698CrossRefPubMedGoogle Scholar
  19. 19.
    Spielmann J, Buch F, Harder S (2008) Early main-group metal catalysts for the hydrogenation of alkenes with H2. Angew Chem Int Ed 47:9434–9438CrossRefGoogle Scholar
  20. 20.
    Ashley AE, Thompson AL, Hare DO (2009) Non-metal mediated homogeneous hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 48:9839–9843CrossRefGoogle Scholar
  21. 21.
    Menard G, Stephan DW (2010) Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane. J Am Chem Soc 132:1796–1797CrossRefPubMedGoogle Scholar
  22. 22.
    Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Reversible, metal-free hydrogen activation. Science 314:1124–1126CrossRefPubMedGoogle Scholar
  23. 23.
    Stephan DW (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Org Biomol Chem 6:1535–1539CrossRefPubMedGoogle Scholar
  24. 24.
    Cardenas AJP, Culotta BJ, Warren TH, Grimme S, Stute A, Froehlich R, Kehr G, Erker G (2011) Capture of NO by a frustrated Lewis pair: a new type of persistent N-oxyl radical. Angew Chem Int Ed 50:7567–7571CrossRefGoogle Scholar
  25. 25.
    McCahill JSJ, Welch GC, Stephan DW (2007) Reactivity of “frustrated Lewis pairs”: three-component reactions of phosphines, a borane, and olefins. Angew Chem Int Ed 46:4968–4971CrossRefGoogle Scholar
  26. 26.
    Spies P, Erker G, Kehr G, Bergander K, Fröhlich R, Grimme S, Stephan DW (2007) Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. Chem Commun 0:5072–5074CrossRefGoogle Scholar
  27. 27.
    Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskela M, Repo T, Pyykko P, Rieger B (2008) Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. J Am Chem Soc 130:14117–14119CrossRefPubMedGoogle Scholar
  28. 28.
    Appelt C, Westenberg H, Bertini F, Ehlers AW, Slootweg JC, Lammertsma K, Uhl W (2011) Geminal phosphorus/aluminum-based frustrated Lewis pairs: C-H versus C≡C activation and CO2 fxation. Angew Chem Int Ed 50:3925–3928CrossRefGoogle Scholar
  29. 29.
    Moemming CM, Otten E, Kehr G, Froehlich R, Grimme S, Stephan DW, Erker G (2009) Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. Angew Chem Int Ed 48:6643–6646CrossRefGoogle Scholar
  30. 30.
    Fontaine FG, Courtemanche MA, Légaré MA (2014) Transition-metal-free catalytic reduction of carbon dioxide. Chem Eur J 20:2990–2996CrossRefPubMedGoogle Scholar
  31. 31.
    Jiang C, Blacque O, Berke H (2010) Activation of terminal alkynes by frustrated Lewis pairs. Organometallics 29:125–133CrossRefGoogle Scholar
  32. 32.
    Johnstone TC, Wee GNJH, Stephan DW (2018) Accessing frustrated Lewis pair chemistry from a spectroscopically stable and classical Lewis acid-base adduct. Angew Chem Int Ed 57:5881–5884CrossRefGoogle Scholar
  33. 33.
    Wang T, Kehr G, Daniliuc CG, Erker G (2018) Metal-free carbonylation route to a reactive borataepoxide system. Organometallics 37:1040–1049CrossRefGoogle Scholar
  34. 34.
    Ghara M, Chattaraj PK (2018) Fixation of nitrous oxide (N2O) by 1,4,2,5-diazadiborinine: a DFT study. Int J Quantum Chem 118:e25593CrossRefGoogle Scholar
  35. 35.
    Sumerin V, Schulz F, Nieger M, Leskelä M, Repo T, Rieger B (2008) Facile heterolytic H2 activation by amines and B(C6F5)3. Angew Chem Int Ed 47:6001–6003CrossRefGoogle Scholar
  36. 36.
    Liu L, Vankova N, Heine T (2016) A kinetic study on the reduction of CO2 by frustrated Lewis pair: from understanding to rational design. Phys Chem Chem Phys 18:3567–3574CrossRefPubMedGoogle Scholar
  37. 37.
    Dureen MA, Stephan DW (2010) Reaction of boron amidinates with CO2 and CO and other small molecules. J Am Chem Soc 132:13559–13568CrossRefPubMedGoogle Scholar
  38. 38.
    Jiang B, Zhang Q, Dang L (2018) Theoretical studies on bridged frustrated Lewis pair (FLP) mediated H2 activation and CO2 hydrogenation. Org Chem Front 5:1905–1915CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  40. 40.
    Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  41. 41.
    Zhao X, Stephan DW (2011) Olefin-borane “Van Der Waals complexes”: intermediates in frustrated Lewis pair addition reactions. J Am Chem Soc 133:12448–12450CrossRefPubMedGoogle Scholar
  42. 42.
    Theuergarten E, Schlüns D, Grunenberg J, Daniliuc CG, Jones PG, Tamm M (2010) Intramolecular heterolytic dihydrogen cleavage by a bifunctional frustrated pyrazolylborane Lewis pair. Chem Commun 46:8561–8563CrossRefGoogle Scholar
  43. 43.
    Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  44. 44.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746CrossRefGoogle Scholar
  46. 46.
    Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01. Gaussian, Inc., WallingfordGoogle Scholar
  48. 48.
    Mitoraj MP, Michalak A, Ziegler TA (2009) Combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5:962–975CrossRefPubMedGoogle Scholar
  49. 49.
    Baerends EJ, Ziegler T, Autschbach J, Bashford D, Berces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP et al (2013) ADF2013.01. Vrije Universiteit, AmsterdamGoogle Scholar
  50. 50.
    van Lenthe E, Baerends E-J, Snijders JG (1994) Relativistic total energy using regular approximations. J Chem Phys 101:9783–9792CrossRefGoogle Scholar
  51. 51.
    Zeonjuk L-L, St Petkov P, Heine T, Röschenthaler GV, Eicher J, Vankova N (2015) Are intramolecular frustrated Lewis pairs also intramolecular catalysts? A theoretical study on H2 activation. Phys Chem Chem Phys 17:10687–10698CrossRefPubMedGoogle Scholar
  52. 52.
    Padmanabhan J, Parthasarathi R, Sarkar U, Subramanian V, Chattaraj PK (2004) Effect of solvation on the condensed Fukui function and the generalized philicity index. Chem Phys Lett 383:122–128CrossRefGoogle Scholar
  53. 53.
    Chattaraj PK, Pérez P, Zevallos J, Toro-Labbe A (2001) Ab initio SCF and DFT studies on solvent effects on intramolecular rearrangement reactions. J Phys Chem A 105:4272–4283CrossRefGoogle Scholar
  54. 54.
    Wang J, Liang Y, Zhou D, Maa J, Jing H (2018) New crown ether complex cation ionic liquids with N-heterocycle anions: preparation and application in CO2 fixation. Org Chem Front 5:741–748CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Center for Theoretical StudiesIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of ChemistryIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations