Growth of iron clusters on octahedral B12N12 cage: a time-dependent-DFT analysis

Abstract

Aiming to search for new sensors of drugs and vehicles for their transportation, in this work is studied the growth of iron clusters, Fen n ≤ 4, on the surface of the B12N12 cage. Results of the quantum-simulation, done with time-dependent density functional theory, shows that the Fe4 cluster growths on a hexagonal face of the octahedral B12N12 cage. Tetrahedral (T) and parallelogram (P) forms of Fe4 are stabilized by adsorption, yielding B12N12/Fe4–T, with multiplicity (M) of 13, and B12N12/Fe4–P, with M = 9, nanocomposites. The T system behaves as semiconductor and the second one shows a semimetal pattern. The global quantum descriptors for the P composite indicate high polarity, low average chemical reactivity, and lower work function, 0.05 eV, as compared to that of the T form, 0.40 eV. That is, the B12N12/Fe4–P system is promising for the design of sensor devices or nanovehicle of organic molecules.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Wang J, Huei Lee C, Khin Yap Y (2010). Nanoscale 2:2028–2034

    CAS  Article  Google Scholar 

  2. 2.

    Pakdel A, Bando Y, Golberg D (2014). Chem Soc Rev 43:934–959

    CAS  Article  Google Scholar 

  3. 3.

    Stephan O, Bando Y, Loiseau A, Willaime F, Shramchenko N, Tamiya T, Sato T (1998). Appl Phys A Mater Sci Process 67:107–111

    CAS  Article  Google Scholar 

  4. 4.

    Golberg D, Bando Y, Stephan O, Kurashima K (1998). Appl Phys Lett 73:2441–2443

    CAS  Article  Google Scholar 

  5. 5.

    Oku T, Nishiwaki A, Narita I (2004). Sci Technol Adv Mater 5:635–638

    CAS  Article  Google Scholar 

  6. 6.

    Shakerzadeh E, Khodayar E, Noorizadeh S (2016). Comput Mater Sci 118:155–171

    CAS  Article  Google Scholar 

  7. 7.

    Bezi Javan M, Soltani A, Azmoodeh Z, Abdolahi N, Gholami N (2016). RSC Adv 6:104513–104521

    Article  Google Scholar 

  8. 8.

    Shokuhi Rad A (2018). J Theor Comput Chem 17(2):1850013–1850013

    Article  Google Scholar 

  9. 9.

    Lee CH, Xie M, Kayastha V, Wang J, Yap YK (2010). Chem Mater 22:1782–1787

    CAS  Article  Google Scholar 

  10. 10.

    Pakdel A, Wang XB, Zhi CY, Bando Y, Watanabe K, Sekiguchi T, Nakayama T, Golberg D (2012). J Mater Chem 22:4818–4824

    CAS  Article  Google Scholar 

  11. 11.

    Ci L, Song L, Jin CH, Jariwala D, Wu DX, Li YJ, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010). Nat Mater 9:430–435

    CAS  Article  Google Scholar 

  12. 12.

    Grujicic M, Zhou XW (1992). Calphad 16:310–315

    Google Scholar 

  13. 13.

    Gutsev LG, Bauschlicher CW Jr (2003) J Phys Chem A 107:7013–7023

  14. 14.

    Samah M, Moula B (2011). Rev Mex Fis 57(2):166–171

    CAS  Google Scholar 

  15. 15.

    Castro M (1997). Int J Quantum Chem 64(2):223–230

    CAS  Article  Google Scholar 

  16. 16.

    Castro M (2007). Chem Phys Lett 435(2):322–326

    CAS  Article  Google Scholar 

  17. 17.

    Van Voorhis T, Scuseria GE (1998). J Chem Phys 109:400–410

    Article  Google Scholar 

  18. 18.

    Sadhukhan S, Muñoz D, Adamo C, Scuseria GE (1999). Chem Phys Lett 306:83–87

    CAS  Article  Google Scholar 

  19. 19.

    Jaramillo J, Scuseria GE (1999). Chem Phys Lett 312:269–272

    CAS  Article  Google Scholar 

  20. 20.

    Ditchfield R, Hehre WJ, Pople JA (1971). J Chem Phys 54:724–728

    CAS  Article  Google Scholar 

  21. 21.

    Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox (2013) Gaussian, Inc., Wallingford CT

  22. 22.

    Geerlings P, De Proft F, Langenaeker W (2003). Chem Rev 103:1793–1874

    CAS  Article  Google Scholar 

  23. 23.

    Gálvan M, Vela A, Gázquez JL (1988) J Phys Chem 92:6470–6474

  24. 24.

    Lu H, Liu Z, Yan X, Li D, Parent L, Tian H(2016) Sci Rep 6:24366(1)–(11)

  25. 25.

    Bergveld P, Hendrikse J, Olthuis W (1998) Meas Sci Technol 9:1801–1808

  26. 26.

    Tang CM, Deng KM, Yang JL, Wang X (2006). Chin J Chem 24:1133–1136

    CAS  Article  Google Scholar 

  27. 27.

    Semenov SG, Bedrina ME, Makarova MV, Titov AV (2017). J Struct Chem 58(3):447–451

    CAS  Article  Google Scholar 

  28. 28.

    Tatewaki H, Tomonari M (1992). Can J Chem 70(2):642–656

    CAS  Article  Google Scholar 

  29. 29.

    Cervantes-Salguero K, Seminario JM (2012). J Mol Model 18(9):4043–4052

    CAS  Article  Google Scholar 

  30. 30.

    Yourdkhani S, Korona T, Hadipour NL (2015). J Phys Chem A 119:6446–6467

    CAS  Article  Google Scholar 

  31. 31.

    Wang H (2010). Chin J Chem 28:1897–1901

    CAS  Article  Google Scholar 

  32. 32.

    Haynes WM (2013) CRC handbook of chemistry and physics94th edn. CRC Press, Boca Raton

    Google Scholar 

Download references

Funding

This work was partially supported by the following projects: VIEP-BUAP (CHAE-ING18-G), Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177), “Red Internacional para el estudio de sistemas híbridos grafeno-fullereno” of CONICYT (REDI170303), and by the National Laboratory Supercomputing Southeast housed in the BUAP. Financial support was provided by DGAPA-UNAM, under Project PAPIIT IN114619, and by the Facultad de Química, under the PAIP–FQ program. M. Castro deeply thanks the Dirección General de Cómputo y de Tecnologías de la Información (DGTIC-UNAM) Project LANCAD-UNAM-DGTIC-063 (M. Castro).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to M. Castro or E. Chigo Anota.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 197 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castro, M., Chigo Anota, E. Growth of iron clusters on octahedral B12N12 cage: a time-dependent-DFT analysis. Struct Chem 30, 195–200 (2019). https://doi.org/10.1007/s11224-018-1193-2

Download citation

Keywords

  • Octahedral B12N12 cage
  • Parallelogram Fe4 cluster
  • Tetrahedral F4 cluster
  • Magnetism
  • TD-DFT theory