Thermochemistry of drugs: experimental and theoretical study of analgesics

Abstract

Acetanilides are broadly used in the pharmaceutical industry. Thermochemical data on vapor pressures, solid-gas, liquid-gas, and solid-liquid phase transitions, as well as on enthalpies of formation of substituted acetanilides have been collected and evaluated with help of additional experimental measurements. Absolute vapor pressures of meta- and para-substituted acetanilides were studied by using transpiration method. Significant disagreement of available literature data on isomeric hydroxyacetanilides was detected and resolved. A quick estimation scheme of vaporization enthalpies of substituted acetanilides at 298.15 K was developed based on “structure-property” relationships. Quantum-chemical methods were applied for calculation of theoretical gas-phase enthalpies of formation of substituted acetanilides. Theoretical values together with results from “structure-property” analysis allowed for validation of the experimental crystalline state enthalpies of formation and prediction of these values based on quantum-chemical calculations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Pernerstorfer T, Schmid R, Bieglmayer C, Eichler H-G, Kapiotis S, Jilma B (1999) Acetaminophen has greater antipyretic efficacy than aspirin in endotoxemia: a randomized, double-blind, placebo-controlled trial. Clin Pharmacol Ther 66:51–57

    CAS  Article  Google Scholar 

  2. 2.

    Buchman R, Hamilton DN (1981) Design, synthesis, and biological activity of rigid acetanilide herbicides. J Agric Food Chem 29:1285–1286

    CAS  Article  Google Scholar 

  3. 3.

    Giamarellos-Bourboulis EJ, Spyridaki A, Savva A, Georgitsi M, Tsaganos T, Mouktaroudi M, Raftogiannis M, Antonopoulou A, Papaziogas V, Baziaka F, Sereti K, Christopoulos P, Marioli A, Kanni T, Maravitsa P, Pantelidou I, Leventogiannis K, Tsiaoussis P, Lymberopoulou K, Koutelidakis IM (2014) Intravenous paracetamol as an antipyretic and analgesic medication: the significance of drug metabolism. J Pharmacol Sci 124:144–152

    CAS  Article  Google Scholar 

  4. 4.

    Clissold SP (1986) Paracetamol and phenacetin. Drugs 32:46–59

    Article  Google Scholar 

  5. 5.

    Verevkin SP (2005) Phase changes in pure component systems: liquids and gases. Measurement of the thermodynamic properties of multiple phases. Elsevier, Amsterdam

    Google Scholar 

  6. 6.

    Aihara A (1960) Estimation of the energy of hydrogen bonds formed in crystals. III. Amides. Bull Chem Soc Jpn 33:1188–1194

    CAS  Article  Google Scholar 

  7. 7.

    Picciochi R, Diogo HP, Minas da Piedade ME (2010) Thermochemistry of paracetamol. J Therm Anal Calorim 100:391–401

    CAS  Article  Google Scholar 

  8. 8.

    Almeida ARRP, Sousa CAD, Santos LMNBF, Monte MJS (2015) Thermodynamic properties of sublimation of the ortho and meta isomers of acetoxy and acetamido benzoic acids. J Chem Thermodyn 86:6–12

    CAS  Article  Google Scholar 

  9. 9.

    Monte MJS, Santos LMNBF, Fonseca JMS, Sousa CAD (2010) Vapour pressures, enthalpies and entropies of sublimation of para substituted benzoic acids. J Therm Anal Calorim 100:465–474

    CAS  Article  Google Scholar 

  10. 10.

    Perlovich GL, Volkova TV, Manin AN, Bauer-Brandl A (2008) Influence of position and size of substituents on the mechanism of partitioning: a thermodynamic study on acetaminophens, hydroxybenzoic acids, and parabens. AAPS Pharm Sci Tech 9:205–216

    CAS  Article  Google Scholar 

  11. 11.

    Perlovich GL, Volkova TV, Bauer-Brandl A (2007) Polymorphism of paracetamol. J Therm Anal Calorim 89:767–774

    CAS  Article  Google Scholar 

  12. 12.

    Manin AN, Voronin AP, Perlovich GL (2014) Acetamidobenzoic acid isomers: studying sublimation and fusion processes and their relation with crystal structures. Thermochim Acta 583:72–77

    CAS  Article  Google Scholar 

  13. 13.

    Manin AN, Voronin AP, Manin NG, Vener MV, Shishkina AV, Lermontov AS, Perlovich GL (2014) Salicylamide cocrystals: screening, crystal structure, sublimation thermodynamics, dissolution, and solid-state DFT calculations. J Phys Chem B 118:6803–6814

    CAS  Article  Google Scholar 

  14. 14.

    Yagofarov MI, Nagrimanov RN, Solomonov BN (2017) Sublimation enthalpies of 9 substituted acetanilides at 298 K estimated by solution calorimetry approach. Thermochim Acta 656:85–89

    CAS  Article  Google Scholar 

  15. 15.

    Held C, Brinkmann J, Schröder AD, Yagofarov MI, Verevkin SP (2018) Solubility predictions of acetanilide derivatives in water: combining thermochemistry and thermodynamic modeling. Fluid Phase Equilibr 455:43–53

    CAS  Article  Google Scholar 

  16. 16.

    Wiedemann HG (1972) Applications of thermogravimetry for vapor pressure determination. Thermochim Acta 3:355–366

    CAS  Article  Google Scholar 

  17. 17.

    Verevkin SP, Emel’yanenko VN, Varfolomeev MA, Solomonov BN, Zherikova KV (2014) Vaporization enthalpies of a series of the fluoro- and chloro-substituted methylbenzenes. Fluid Phase Equilib 380:67–75

    CAS  Article  Google Scholar 

  18. 18.

    Verevkin SP, Sazonova AY, Emel'yanenko VN, Zaitsau DH, Varfolomeev MA, Solomonov BN, Zherikova KV (2015) Thermochemistry of halogen-substituted methylbenzenes. J Chem Eng Data 60:89–103

    CAS  Article  Google Scholar 

  19. 19.

    Johnson WH (1975) Enthalpies of combustion and formation of acetanilide and urea. J Res Natl Bur Stand Sect A Phys Chem 79A:487–491

    CAS  Article  Google Scholar 

  20. 20.

    Sato-Toshima T, Kamaguchi A, Nishiyama K, Sakiyama M (1983) Enthalpies of combustion of organic compounds. IV. Acetanilide and nicotinic acid. Bull Chem Soc Jpn 56:51–54

    CAS  Article  Google Scholar 

  21. 21.

    Ribeiro da Silva MAV, Pilcher G, Santos LMNBF, Lima LMSS (2007) Calibration and test of an aneroid mini-bomb combustion calorimeter. J Chem Thermodyn 39:689–697

    CAS  Article  Google Scholar 

  22. 22.

    Swarts F (1909) Sur la chaleur de formation de l'aniline et de quelques-uns de ses dérivés. Recl Trav Chim Pays-Bas 28:155–165

    CAS  Article  Google Scholar 

  23. 23.

    Ryskalieva AK, Erkasov RS, Abramova GV, Nurakhmetov NN (1991) Thermochemistry of o-methylacetanilide and 2′,4′-dimethylacetanilide. Izv Vyssh Uchebn Zaved, Khim Khim Tekhnol 34:25–28

    CAS  Google Scholar 

  24. 24.

    Lemoult MP (1906) Thermochimie. - Chaleur de combustion et de formation de quelques composes cycliques azotes. Compt Rend 143:772–775

    Google Scholar 

  25. 25.

    Verevkin SP, Emel’yanenko VN (2008) Transpiration method: vapor pressures and enthalpies of vaporization of some low-boiling esters. Fluid Phase Equilib 266:64–75

    CAS  Article  Google Scholar 

  26. 26.

    Nagrimanov RN, Samatov AA, Buzyurov AV, Kurshev AG, Ziganshin MA, Zaitsau DH, Solomonov BN (2018) Thermochemical properties of mono- and di-cyano-aromatic compounds at 298.15 K. Thermochim Acta accepted

  27. 27.

    Kulikov D, Verevkin SP, Heintz A (2001) Determination of vapor pressures and vaporization enthalpies of the aliphatic branched C5 and C6 alcohols. J Chem Eng Data 46:1593–1600

    CAS  Article  Google Scholar 

  28. 28.

    Ziganshin MA, Bikmukhametova AA, Gerasimov AV, Gorbatchuk VV, Ziganshina SA, Bukharaev AA (2014) The effect of substrate and air humidity on morphology of films of L-leucyl-L-leucine dipeptide. Prot Met Phys Chem 50:49–54

    CAS  Article  Google Scholar 

  29. 29.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision A.02, Gaussian Inc. Wallingford CT

  30. 30.

    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109:7764–7776

    CAS  Article  Google Scholar 

  31. 31.

    Verevkin SP, Emel’yanenko VN, Notario R, Roux MV, Chickos JS, Liebman JF (2012) Rediscovering the wheel. Thermochemical analysis of energetics of the aromatic diazines. J Phys Chem Lett 3:3454–3459

    CAS  Article  Google Scholar 

  32. 32.

    McQuarrie DA (1976) Statistical mechanics. Harper’s chemistry series. Harper & Row, New York

    Google Scholar 

  33. 33.

    Vecchio S, Tomassetti M (2009) Vapor pressures and standard molar enthalpies, entropies and Gibbs energies of sublimation of three 4-substituted acetanilide derivatives. Fluid Phase Equilibr 279:64–72

    CAS  Article  Google Scholar 

  34. 34.

    Stull DR (1947) Vapor pressure of pure substances. Organic and inorganic compounds. Ind Eng Chem 39:517–540

    CAS  Article  Google Scholar 

  35. 35.

    Stephenson RM, Malanowski S (1987) Handbook of the thermodynamics of organic compounds, vol 5. Elsevier, New York

    Google Scholar 

  36. 36.

    Vecchio S, Catalani A, Rossi V, Tomassetti M (2004) Thermal analysis study on vaporization of some analgesics. Acetanilide and derivatives. Thermochim Acta 420:99–104

    CAS  Article  Google Scholar 

  37. 37.

    Umnahanant P, Chickos J (2012) Vaporization and sublimation enthalpies of acetanilide and several derivatives by correlation gas chromatography. J Chem Eng Data 57:1331–1337

    CAS  Article  Google Scholar 

  38. 38.

    Cramer JSN (1943) Dampfdruckbestimmungen an einigen organischen Stoffen. Recl Trav Chim Pays-Bas 62:606–610

    CAS  Article  Google Scholar 

  39. 39.

    Cox JD, Pilcher G (1970) Thermochemistry of organic and organometallic compounds. Academic Press, New York

    Google Scholar 

  40. 40.

    Andon RJL, Connett JE (1980) Calibrants for thermal analysis. Measurement of their enthalpies of fusion by adiabatic calorimetry. Thermochim Acta 42:241–247

    CAS  Article  Google Scholar 

  41. 41.

    Sangster J (1999) Phase diagrams and thermodynamic properties of binary systems of drugs. J Phys Chem Ref Data 28:889–930

    CAS  Article  Google Scholar 

  42. 42.

    Chen Y-P, Tang M, Kuo J-C (2005) Solid–liquid equilibria for binary mixtures of N-phenylacetamide with 4-aminoacetophenone, 3-hydroxyacetophenone and 4-hydroxyacetophenone. Fluid Phase Equilibr 232:182–188

    CAS  Article  Google Scholar 

  43. 43.

    Perlovich GL, Volkova TV, Bauer-Brandl A (2006) Towards an understanding of the molecular mechanism of solvation of drug molecules: a thermodynamic approach by crystal lattice energy, sublimation, and solubility exemplified by hydroxybenzoic acids. J Pharm Sci 95:1448–1458

    CAS  Article  Google Scholar 

  44. 44.

    Charsley EL, Laye PG, Markham HM (2012) The use of organic calibration standards in the enthalpy calibration of differential scanning calorimeters. Thermochim Acta 539:115–117

    CAS  Article  Google Scholar 

  45. 45.

    Huang S-Y, Tang M, Ho SL, Chen Y-P (2007) Solubilities of N-phenylacetamide, 2-methyl-N-phenylacetamide and 4-methyl-N-phenylacetamide in supercritical carbon dioxide. J Supercrit Fluids 42:165–171

    CAS  Article  Google Scholar 

  46. 46.

    Manzo RH, Ahumada AA (1990) Effects of solvent medium on solubility. V: Enthalpic and entropic contributions to the free energy changes of di-substituted benzene derivatives in ethanol:water and ethanol:cyclohexane mixtures. J Pharm Sci 79:1109–1115

    CAS  Article  Google Scholar 

  47. 47.

    Baena Y, Barbosa HJ, Pinzón JA, Martínez F (2004) Estimation of the aqueous solubility of some acetanilide derivatives from octanol-water partition coefficients and entropies of fusion. Acta Farm Bonaer 23:33–38

    CAS  Google Scholar 

  48. 48.

    Matsuda H, Mori K, Tomioka M, Kariyasu N, Fukami T, Kurihara K, Tochigia K, Tomonob K (2015) Determination and prediction of solubilities of active pharmaceutical ingredients in selected organic solvents. Fluid Phase Equilibr 406:116–123

    CAS  Article  Google Scholar 

  49. 49.

    Romero S, Bustamante P, Escalera B, Cirri M, Mura P (2004) Characterization of the solid phases of paracetamol and fenamates at equilibrium in saturated solutions. J Therm Anal Calorim 77:541–554

    CAS  Article  Google Scholar 

  50. 50.

    Xu F, Sun LX, Tan ZC, Liang JG, Zhang T (2006) Adiabaticcalorimetry and thermal analysis on acetaminophen. J Therm Anal Calorim 83:187–191

    CAS  Article  Google Scholar 

  51. 51.

    Mota FL, Carneiro AP, Queimada AJ, Pinho SP, Macedo EA (2009) Temperature and solvent effects in the solubility of some pharmaceutical compounds: measurements and modeling. Eur J Pharm Sci 37:499–507

    CAS  Article  Google Scholar 

  52. 52.

    Hojjati H, Rohani S (2006) Measurement and prediction of solubility of paracetamol in water-isopropanol solution. Part 2. Prediction. Org Process Res Dev 10:1110–1118

    CAS  Article  Google Scholar 

  53. 53.

    Rosa F, Corvis Y, Lai-Kuen R, Charrueau C, Espeau P (2015) Influence of particle size on the melting characteristics of organic compounds. J Therm Anal Calorim 120:783–787

    CAS  Article  Google Scholar 

  54. 54.

    Hahnenkamp I, Graubner G, Gmehling J (2010) Measurement and prediction of solubilities of active pharmaceutical ingredients. Int J Pharm 388:73–81

    CAS  Article  Google Scholar 

  55. 55.

    Klímová K, Leitner J (2012) DSC study and phase diagrams calculation of binary systems of paracetamol. Thermochim Acta 550:59–64

    Article  Google Scholar 

  56. 56.

    Ledru J, Imrie CT, Pulham CR, Ceolin R, Hutchinson JM (2007) High pressure differential scanning calorimetry investigations on the pressure dependence of the melting of paracetamol polymorphs I and II. J Pharm Sci 96:2784–2794

    CAS  Article  Google Scholar 

  57. 57.

    Sakata Y, Tanabe E, Sumikawa T, Shiraishi S, Tokudome Y, Otsuka M (2007) Effects of solid-state reaction between paracetamol and cloperastine hydrochloride on the pharmaceutical properties of their preparations. Int J Pharm 335:12–19

    CAS  Article  Google Scholar 

  58. 58.

    Avula SG, Alexander K, Riga A (2010) Predicting eutectic behavior of drugs and excipients by unique calculations. J Therm Anal Calorim 99:655–658

    CAS  Article  Google Scholar 

  59. 59.

    Chickos JS, Acree Jr WE (2002) Enthalpies of sublimation of organic and organometallic compounds. 1910–2001. J Phys Chem Ref Data 31:537–698

    CAS  Article  Google Scholar 

  60. 60.

    Verevkin SP, Emel'yanenko VN, Diky V, Muzny CD, Chirico RD, Frenkel M (2013) New group-contribution approach to thermochemical properties of organic compounds: hydrocarbons and oxygen-containing compounds. J Phys Chem Ref Data 42:033102-1-033102-33

  61. 61.

    Walden P (1908) Ober die schmelzwarme, spezifische kohasion und molekulargrosse bei der schmelztemperatur. Z Elektrochem 14:713–724

    CAS  Article  Google Scholar 

  62. 62.

    Emel’yanenko VN, Zaitseva KV, Nagrimanov RN, Solomonov BN, Verevkin SP (2016) Benchmark thermodynamic properties of methyl- and Methoxybenzamides: comprehensive experimental and theoretical study. J Phys Chem A 120:8419–8429

    Article  Google Scholar 

  63. 63.

    Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics. The MM3 force field for hydrocarbons. 1. J Am Chem Soc 111:8551–8566

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contribution of Dr. Vladimir N. Emel’yanenko for quantum-chemical calculations.

Funding

This work has been partly supported by the Russian Government Program of Competitive Growth of Kazan Federal University. R.N gratefully acknowledges the financial support by the research grant of Kazan Federal University and the financial support by the Russian Ministry of Education and Science No. 4.5289.2017/9.10. B.S. and gratefully acknowledges the financial support by the Russian Ministry of Education and Science No.4.5618.2017/6.7. This work has been partly supported by the German Science Foundation (DFG) in the frame of the priority program SPP 1807 “Control of London Dispersion Interactions in Molecular Chemistry”, as well as of the priority program SPP 1708 “Material Synthesis Near Room Temperature”.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ruslan N. Nagrimanov or Sergey P. Verevkin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 246 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagrimanov, R.N., Ziganshin, M.A., Solomonov, B.N. et al. Thermochemistry of drugs: experimental and theoretical study of analgesics. Struct Chem 30, 247–261 (2019). https://doi.org/10.1007/s11224-018-1188-z

Download citation

Keywords

  • Acetanilide derivatives
  • Vapor pressures, enthalpy of sublimation
  • Enthalpy of vaporization, enthalpy of fusion