Ab initio investigation of possible lower-energy candidate structure for cationic water cluster (H2O) 12+ via particle swarm optimization method


Detecting the underlying performance of hydrated electrons and hydroxyl radicals in the cationic water cluster can greatly help to understand the inter reaction mechanism in the liquid water and aqueous solutions. Based on our previous (H2O)10+ research, we have paid attention to more problems of larger cationic clusters in this work, including the existence of hemibonded type, long-range correction functions, and hydrogen-bonded site analyses. The lower-energy structures of the cationic water cluster (H2O)12+ have been comprehensively explored, and more experienced functions are introduced to check the ground state and vibration spectrum. Unlike the configuration regularity of neutral (H2O)12 clusters and small cationic water clusters, those new-found structures for (H2O)12+ are inclined to adopt three dimension (3D) cage-like structures and the H2O-OH2 structure appears in the higher energy isomer. The calculation reveals that the lowest stable isomer is the 3D cage structure W14 predicted at MP2 level, which has not been reported yet. In the thermal simulation, structure transition from the cage-like to the ring-like occurs at T > ≈256 K, and the two dimension (2D) ring-like structure occupies a dominant position at high temperature range. The infrared spectra explain that the difference of the spectra between the 2D net structures and 3D cage-structures is mainly caused by the weight fluctuation of single acceptor-single donor (AD), double acceptor-single donor (AAD), and single acceptor-double donor (ADD) sites in these isomers. This further gives a similarity relation between (H2O)12+ and H+(H2O)12 clusters in the shape of the network and spectral characteristics. By molecular orbitals and topological analysis, we find that the lone pair orbital on hydroxyl radical dominates the reactivity and stability of cationic system. The present research may be helpful for exploring the evolution law of the larger cationic water clusters in the future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Meyer TJ (2008). Nature 451:778–779

    CAS  PubMed  Google Scholar 

  2. 2.

    Vaida V (2011). J Chem Phys 135:020901

    PubMed  Google Scholar 

  3. 3.

    Garrett BC et al (2005). Chem Rev 105:355–389

    CAS  PubMed  Google Scholar 

  4. 4.

    Domaracka A, Capron M, Maclot S, Chesnel J-Y, Méry A, Poully J-C, Rangama J, Adoui L, Rousseau P, Huber BA (2012). J. Phys.: Conf. Ser 373:012005

    Google Scholar 

  5. 5.

    Alizadeh E, Sanche L (2012). Chem Rev 112:5578–5602

    CAS  PubMed  Google Scholar 

  6. 6.

    Wang D, Li R, Zhu J, Shi J, Han J, Zong X, Li C (2012). J Phys Chem C 116:5082–5089

    CAS  Google Scholar 

  7. 7.

    Leonard KC, Nam KM, Lee HC, Kang SH, Park HS, Bard AJ (2013). J Phys Chem C 117:15901–15910

    CAS  Google Scholar 

  8. 8.

    Zhang Q-H, Han W-D, Hong Y-J, Yu J-G (2009) Catal. Today 148:335–340

    CAS  Google Scholar 

  9. 9.

    Chen ZF, Concepcion JJ, Luo HL, Hull JF, Paul A, Meyer TJ (2010). J Am Chem Soc 132:17670–17673

    CAS  PubMed  Google Scholar 

  10. 10.

    Karunadasa HI, Chang CJ, Long JR (2010). Nature 464:1329–1333

    CAS  PubMed  Google Scholar 

  11. 11.

    Devisser SP, Dekoning LJ, Nibbering NMM (1995). J Phys Chem 99:15444–15447

    CAS  Google Scholar 

  12. 12.

    Lee HM, Kumar A, Kolaski M, Kim DY, Lee EC, Min SK, Park M, Choi YC, Kim KS (2010). Phys Chem Chem Phys 12:6278–6287

    CAS  PubMed  Google Scholar 

  13. 13.

    Periyasamy G, Levine RD, Remacle F (2009). Chem Phys 366:129–138

    CAS  Google Scholar 

  14. 14.

    Yourey JE, Pyper KJ, Kurtz JB, Bartlett BM (2013). J Phys Chem C 117:8708–8718

    CAS  Google Scholar 

  15. 15.

    Bednarek J, Plonka A, Hallbrucker A, Mayer E (1998). Radiat Phys Chem 53:635–638

    CAS  Google Scholar 

  16. 16.

    Herr JD, Steele RP (2016). J Phys Chem A 120:7225–7239

    CAS  PubMed  Google Scholar 

  17. 17.

    Yan Z, Sweasy JB (2009). Radiat Res 171:636–636

    Google Scholar 

  18. 18.

    Wang CR, Nguyen J, Lu QB (2009). J Am Chem Soc 131:11320–11322

    CAS  PubMed  Google Scholar 

  19. 19.

    Cheng QY, Evangelista FA, Simmonett AC, Yamaguchi Y, Schaefer HF (2009). J Phys Chem A 113:13779–13789

    CAS  PubMed  Google Scholar 

  20. 20.

    Valeev EF, Schaefer HF (1998). J Chem Phys 108:7197–7201

    CAS  Google Scholar 

  21. 21.

    Haberland H, Langosch H (1986) Z. Phys. D: At., Mol. Clusters 2:243–247

    CAS  Google Scholar 

  22. 22.

    Shinohara H, Nishi N, Washida N (1986). J Chem Phys 84:5561–5567

    CAS  Google Scholar 

  23. 23.

    Jongma RT, Huang YH, Shi SM, Wodtke AM (1998). J Phys Chem A 102:8847–8854

    CAS  Google Scholar 

  24. 24.

    Mizuse K, Kuo J-L, Fujii A (2011). Chem Sci 2:868–876

    CAS  Google Scholar 

  25. 25.

    Mizuse K, Fujii A (2013). J Phys Chem A 117:929–938

    CAS  PubMed  Google Scholar 

  26. 26.

    Sodupe M, Bertran J, Rodriguez-Santiago L, Baerends EJ (1999). J Phys Chem A 103:166–170

    CAS  Google Scholar 

  27. 27.

    Grafenstein J, Kraka E, Cremer D (2004). Phys Chem Chem Phys 6:1096–1112

    Google Scholar 

  28. 28.

    Grafenstein J, Kraka E, Cremer D (2004). J Chem Phys 120:524–539

    CAS  PubMed  Google Scholar 

  29. 29.

    Lee HM, Kim KS (2009). J Chem Theory Comput 5:976–981

    CAS  PubMed  Google Scholar 

  30. 30.

    Kamarchik E, Kostko O, Bowman JM, Ahmed M, Krylov AI (2010). J Chem Phys 132:194311

    PubMed  Google Scholar 

  31. 31.

    Lee HM, Kim KS (2013). J Comput Chem 34:1589–1597

    CAS  PubMed  Google Scholar 

  32. 32.

    Do H, Besley NA (2013). J Phys Chem A 117:5385–5391

    CAS  PubMed  Google Scholar 

  33. 33.

    Lv J, Wang YC, Zhu L, Ma YM (2012). J Chem Phys 137:084104

    PubMed  Google Scholar 

  34. 34.

    Lv ZL, Xu K, Cheng Y, Chen XR, Cai LC (2014). J Chem Phys 141:054309

    PubMed  Google Scholar 

  35. 35.

    Liu L, Hu CE, Tang M, Chen XR, Cai LC (2016). J Chem Phys 145:154307

    PubMed  Google Scholar 

  36. 36.

    Tang M, Hu CE, Lv ZL, Chen XR, Cai LC (2016). J Phys Chem A 120:9489–9499

    CAS  PubMed  Google Scholar 

  37. 37.

    Chen WQ, Fu M, Wang HY, Zeng ZY, Yu BR (2018). Struct Chem. https://doi.org/10.1007/s11224-018-1109-1

  38. 38.

    Angel L, Stace A (2001). Chem Phys Lett 345:277–281

    CAS  Google Scholar 

  39. 39.

    Gardeinier GH, Johnson MA, McCoy AB (2009). J Phys Chem A 113:4772–4779

    Google Scholar 

  40. 40.

    Tachikawa H (2004). J Phys Chem A 108:7853–7862

    CAS  Google Scholar 

  41. 41.

    Yamaguchi S, Kudoh S, Kawai Y, Okada Y, Orii T, Takeuchi K (2003). Chem Phys Lett 377:37–42

    CAS  Google Scholar 

  42. 42.

    Herr JD, Talbot J, Steele RP (2015). J Phys Chem A 119:752–766

    CAS  PubMed  Google Scholar 

  43. 43.

    Lu EP, Pan PR, Li YC, Tsai MK, Kuo JL (2014). Phys Chem Chem Phys 16:18888–18895

    CAS  PubMed  Google Scholar 

  44. 44.

    Talbot JJ, Cheng XL, Herr JD, Steele RP (2016). J Am Chem Soc 138:11936–11945

    CAS  PubMed  Google Scholar 

  45. 45.

    Tachikawa H, Takada T (2015). RSC Adv 5:6945–6953

    CAS  Google Scholar 

  46. 46.

    Chipman DM (2016). J Phys Chem A 120:9618–9624

    CAS  PubMed  Google Scholar 

  47. 47.

    Tachikawa H, Takada T (2016). Chem Phys 475:9–13

    CAS  Google Scholar 

  48. 48.

    Furuhama A, Dupuis M, Hirao K (2006). J Chem Phys 124:164310

    CAS  PubMed  Google Scholar 

  49. 49.

    Heine N, Fagiani MR, Asmis KR (2015). J Phys Chem Lett 6:2298–2304

    CAS  PubMed  Google Scholar 

  50. 50.

    Wang YC, Lv JA, Zhu L, Ma YM (2010). Phys Rev B 82:094116

    Google Scholar 

  51. 51.

    Abraham NL, Probert MIJ (2006). Phys Rev B 73:224104

    Google Scholar 

  52. 52.

    Abraham NL, Probert MIJ (2008). Phys Rev B 77:134117

    Google Scholar 

  53. 53.

    Trimarchi G, Zunger A (2007). Phys Rev B 75:104113

    Google Scholar 

  54. 54.

    Hohenberg P, Kohn W (1964). Phys Rev 136:B864–B871

    Google Scholar 

  55. 55.

    Kohn W, Sham LJ (1965). Phys Rev 140:1133–1142

    Google Scholar 

  56. 56.

    Parr RG (1989) Density functional theory of atoms and molecules. Oxford University Press, pp 2522–2526

  57. 57.

    Reinhold J (1990). Cryst Res Technol 25:624–624

    Google Scholar 

  58. 58.

    Headgordon M, Pople JA, Frisch MJ (1988). Chem Phys Lett 153:503–506

    CAS  Google Scholar 

  59. 59.

    Saebo S, Almlof J (1989). Chem Phys Lett 154:83–89

    CAS  Google Scholar 

  60. 60.

    Frisch MJ, Headgordon M, Pople JA (1990). Chem Phys Lett 166:275–280

    CAS  Google Scholar 

  61. 61.

    Frisch MJ, Headgordon M, Pople JA (1990). Chem Phys Lett 166:281–289

    CAS  Google Scholar 

  62. 62.

    Headgordon M, Headgordon T (1994). Chem Phys Lett 220:122–128

    CAS  Google Scholar 

  63. 63.

    Shin I, Park M, Min SK, Lee EC, Suh SB, Kim KS (2006). J Chem Phys 125:234305

    PubMed  Google Scholar 

  64. 64.

    Park M, Shin I, Singh NJ, Kim KS (2007). J Phys Chem A 111:10692–10702

    CAS  PubMed  Google Scholar 

  65. 65.

    Wang ZQ, Hu CE, Chen XR, Cheng Y, Chen QF (2017, 1118). Comput.Theor. Chem:94–106

  66. 66.

    Wong MW, Radom L (1995). J Phys Chem 102:2237–2245

    Google Scholar 

  67. 67.

    Hehre WJ (1976). Acc Chem Res 9:399–406

    CAS  Google Scholar 

  68. 68.

    Lee HM, Kim KS (2011). Theor Chem Accounts 130:543–548

    CAS  Google Scholar 

  69. 69.

    Smith DGA, Burns LA, Patkowski K, Sherrill CD (2016). J Phys Chem Lett 7:2197–2203

    CAS  PubMed  Google Scholar 

  70. 70.

    Farrokhpour H, Jouypazadeh H (2017). Chem Phys 488-489:1–10

    CAS  Google Scholar 

  71. 71.

    Novakovskaya YV, Stepanov NF (1997). Int J Quantum Chem 61:981–990

    CAS  Google Scholar 

  72. 72.

    M.J. Frisch GWT, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al. ( CT, 2009.). Gaussian, Inc., Wallingford

  73. 73.

    Lu T, Chen FW (2012). J Comput Chem 33:580–592

    PubMed  Google Scholar 

  74. 74.

    Humphrey W, Dalke A, Schulten K (1996). J Mol Graph Model 14:33–38

    CAS  Google Scholar 

  75. 75.

    Tsai CJ, Jordan KD (1993). J Phys Chem 97:5208–5210

    CAS  Google Scholar 

  76. 76.

    Sremaniak LS, Perera L, Berkowitz ML (1996). J Chem Phys 105:3715–3721

    CAS  Google Scholar 

  77. 77.

    Maheshwary S, Patel N, Sathyamurthy N, Kulkarni AD, Gadre SR (2001). J Phys Chem A 105:10525–10537

    CAS  Google Scholar 

  78. 78.

    Shi Q, Kais S, Francisco JS (2005). J Phys Chem A 109:12036–12045

    CAS  PubMed  Google Scholar 

  79. 79.

    Miyazaki M, Fujii A, Ebata T, Mikami N (2004). Science 304:1134–1137

    CAS  PubMed  Google Scholar 

  80. 80.

    Shin JW, Hammer NI, Diken EG, Johnson MA, Walters RS, Jaeger TD, Duncan MA, Christie RA, Jordan KD (2004). Science 304:1137–1140

    CAS  PubMed  Google Scholar 

  81. 81.

    Mizuse K, Mikami N, Fujii A (2010). Angew. Chem. Int. Ed 49:10119–10122

    CAS  Google Scholar 

  82. 82.

    Lee HM, Kim KS (2013). J Comput Chem 34:1589–1597

    CAS  PubMed  Google Scholar 

  83. 83.

    Lin CK, Wu CC, Wang YS, Lee YT, Chang HC, Kuo JL, Klein ML (2005). Phys Chem Chem Phys 7:938–944

    CAS  PubMed  Google Scholar 

  84. 84.

    Hoffmann R (1982). Angew. Chem. Int. Ed. Engl, 21: 711–724

  85. 85.

    Do H, Besley NA (2013). Phys Chem Chem Phys 15:16214–16219

    CAS  PubMed  Google Scholar 

  86. 86.

    Andersson MP, Uvdal P (2005). J Phys Chem A 109:2937–2941

    CAS  PubMed  Google Scholar 

  87. 87.

    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang WT (2010). J Am Chem Soc 132:6498–6506

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Cioslowski J (1991). Science 252:1566–1567

    Google Scholar 

  89. 89.

    Parthasarathi R, Subramanian V, Sathyamurthy N (2006). J Phys Chem A 110:3349–3351

    CAS  PubMed  Google Scholar 

  90. 90.

    Mata I, Alkorta I, Molins E, Espinosa E (2010). Chem. Eur. J 16:2442–2452

    CAS  PubMed  Google Scholar 

  91. 91.

    Ramirez F, Hadad CZ, Guerra D, David J, Restrepo A (2011). Chem Phys Lett 507:229–233

    CAS  Google Scholar 

  92. 92.

    Espinosa E, Molins E, Lecomte C (1998). Chem Phys Lett 285:170–173

    CAS  Google Scholar 

Download references


The authors would like to thank the supports by the Science Challenge Project (Grant No. TZ2016001) and the NSAF (Grant No. U1830101). We also acknowledge the support for the computational resources by the State Key Laboratory of Polymer Materials Engineering of China in Sichuan University. Some calculations are performed on the ScGrid of Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

Author information



Corresponding authors

Correspondence to Zhao-Yi Zeng or Cheng Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material


(DOC 117 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao-Qi, W., Hai-Yan, W., Zeng, Z. et al. Ab initio investigation of possible lower-energy candidate structure for cationic water cluster (H2O) 12+ via particle swarm optimization method. Struct Chem 30, 151–165 (2019). https://doi.org/10.1007/s11224-018-1182-5

Download citation


  • (H2O)12 +
  • Population probability
  • Infrared spectra
  • Singly occupied orbital
  • Topological analysis