Ab initio investigation of possible lower-energy candidate structure for cationic water cluster (H2O) 12+ via particle swarm optimization method

  • Wang Zhao-Qi
  • Wang Hai-Yan
  • Zhao-Yi Zeng
  • Cheng Yan
Original Research


Detecting the underlying performance of hydrated electrons and hydroxyl radicals in the cationic water cluster can greatly help to understand the inter reaction mechanism in the liquid water and aqueous solutions. Based on our previous (H2O)10+ research, we have paid attention to more problems of larger cationic clusters in this work, including the existence of hemibonded type, long-range correction functions, and hydrogen-bonded site analyses. The lower-energy structures of the cationic water cluster (H2O)12+ have been comprehensively explored, and more experienced functions are introduced to check the ground state and vibration spectrum. Unlike the configuration regularity of neutral (H2O)12 clusters and small cationic water clusters, those new-found structures for (H2O)12+ are inclined to adopt three dimension (3D) cage-like structures and the H2O-OH2 structure appears in the higher energy isomer. The calculation reveals that the lowest stable isomer is the 3D cage structure W14 predicted at MP2 level, which has not been reported yet. In the thermal simulation, structure transition from the cage-like to the ring-like occurs at T > ≈256 K, and the two dimension (2D) ring-like structure occupies a dominant position at high temperature range. The infrared spectra explain that the difference of the spectra between the 2D net structures and 3D cage-structures is mainly caused by the weight fluctuation of single acceptor-single donor (AD), double acceptor-single donor (AAD), and single acceptor-double donor (ADD) sites in these isomers. This further gives a similarity relation between (H2O)12+ and H+(H2O)12 clusters in the shape of the network and spectral characteristics. By molecular orbitals and topological analysis, we find that the lone pair orbital on hydroxyl radical dominates the reactivity and stability of cationic system. The present research may be helpful for exploring the evolution law of the larger cationic water clusters in the future.


(H2O)12+ Population probability Infrared spectra Singly occupied orbital Topological analysis 



The authors would like to thank the supports by the Science Challenge Project (Grant No. TZ2016001) and the NSAF (Grant No. U1830101). We also acknowledge the support for the computational resources by the State Key Laboratory of Polymer Materials Engineering of China in Sichuan University. Some calculations are performed on the ScGrid of Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2018_1182_MOESM1_ESM.doc (117 kb)
ESM 1 (DOC 117 kb)


  1. 1.
    Meyer TJ (2008). Nature 451:778–779CrossRefPubMedGoogle Scholar
  2. 2.
    Vaida V (2011). J Chem Phys 135:020901CrossRefPubMedGoogle Scholar
  3. 3.
    Garrett BC et al (2005). Chem Rev 105:355–389CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Domaracka A, Capron M, Maclot S, Chesnel J-Y, Méry A, Poully J-C, Rangama J, Adoui L, Rousseau P, Huber BA (2012). J. Phys.: Conf. Ser 373:012005Google Scholar
  5. 5.
    Alizadeh E, Sanche L (2012). Chem Rev 112:5578–5602CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang D, Li R, Zhu J, Shi J, Han J, Zong X, Li C (2012). J Phys Chem C 116:5082–5089CrossRefGoogle Scholar
  7. 7.
    Leonard KC, Nam KM, Lee HC, Kang SH, Park HS, Bard AJ (2013). J Phys Chem C 117:15901–15910CrossRefGoogle Scholar
  8. 8.
    Zhang Q-H, Han W-D, Hong Y-J, Yu J-G (2009) Catal. Today 148:335–340CrossRefGoogle Scholar
  9. 9.
    Chen ZF, Concepcion JJ, Luo HL, Hull JF, Paul A, Meyer TJ (2010). J Am Chem Soc 132:17670–17673CrossRefPubMedGoogle Scholar
  10. 10.
    Karunadasa HI, Chang CJ, Long JR (2010). Nature 464:1329–1333CrossRefPubMedGoogle Scholar
  11. 11.
    Devisser SP, Dekoning LJ, Nibbering NMM (1995). J Phys Chem 99:15444–15447CrossRefGoogle Scholar
  12. 12.
    Lee HM, Kumar A, Kolaski M, Kim DY, Lee EC, Min SK, Park M, Choi YC, Kim KS (2010). Phys Chem Chem Phys 12:6278–6287CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Periyasamy G, Levine RD, Remacle F (2009). Chem Phys 366:129–138CrossRefGoogle Scholar
  14. 14.
    Yourey JE, Pyper KJ, Kurtz JB, Bartlett BM (2013). J Phys Chem C 117:8708–8718CrossRefGoogle Scholar
  15. 15.
    Bednarek J, Plonka A, Hallbrucker A, Mayer E (1998). Radiat Phys Chem 53:635–638CrossRefGoogle Scholar
  16. 16.
    Herr JD, Steele RP (2016). J Phys Chem A 120:7225–7239CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yan Z, Sweasy JB (2009). Radiat Res 171:636–636CrossRefGoogle Scholar
  18. 18.
    Wang CR, Nguyen J, Lu QB (2009). J Am Chem Soc 131:11320–11322CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cheng QY, Evangelista FA, Simmonett AC, Yamaguchi Y, Schaefer HF (2009). J Phys Chem A 113:13779–13789CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Valeev EF, Schaefer HF (1998). J Chem Phys 108:7197–7201CrossRefGoogle Scholar
  21. 21.
    Haberland H, Langosch H (1986) Z. Phys. D: At., Mol. Clusters 2:243–247CrossRefGoogle Scholar
  22. 22.
    Shinohara H, Nishi N, Washida N (1986). J Chem Phys 84:5561–5567CrossRefGoogle Scholar
  23. 23.
    Jongma RT, Huang YH, Shi SM, Wodtke AM (1998). J Phys Chem A 102:8847–8854CrossRefGoogle Scholar
  24. 24.
    Mizuse K, Kuo J-L, Fujii A (2011). Chem Sci 2:868–876CrossRefGoogle Scholar
  25. 25.
    Mizuse K, Fujii A (2013). J Phys Chem A 117:929–938CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sodupe M, Bertran J, Rodriguez-Santiago L, Baerends EJ (1999). J Phys Chem A 103:166–170CrossRefGoogle Scholar
  27. 27.
    Grafenstein J, Kraka E, Cremer D (2004). Phys Chem Chem Phys 6:1096–1112CrossRefGoogle Scholar
  28. 28.
    Grafenstein J, Kraka E, Cremer D (2004). J Chem Phys 120:524–539CrossRefPubMedGoogle Scholar
  29. 29.
    Lee HM, Kim KS (2009). J Chem Theory Comput 5:976–981CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kamarchik E, Kostko O, Bowman JM, Ahmed M, Krylov AI (2010). J Chem Phys 132:194311CrossRefPubMedGoogle Scholar
  31. 31.
    Lee HM, Kim KS (2013). J Comput Chem 34:1589–1597CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Do H, Besley NA (2013). J Phys Chem A 117:5385–5391CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lv J, Wang YC, Zhu L, Ma YM (2012). J Chem Phys 137:084104CrossRefPubMedGoogle Scholar
  34. 34.
    Lv ZL, Xu K, Cheng Y, Chen XR, Cai LC (2014). J Chem Phys 141:054309CrossRefPubMedGoogle Scholar
  35. 35.
    Liu L, Hu CE, Tang M, Chen XR, Cai LC (2016). J Chem Phys 145:154307CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tang M, Hu CE, Lv ZL, Chen XR, Cai LC (2016). J Phys Chem A 120:9489–9499CrossRefPubMedGoogle Scholar
  37. 37.
    Chen WQ, Fu M, Wang HY, Zeng ZY, Yu BR (2018). Struct Chem.
  38. 38.
    Angel L, Stace A (2001). Chem Phys Lett 345:277–281CrossRefGoogle Scholar
  39. 39.
    Gardeinier GH, Johnson MA, McCoy AB (2009). J Phys Chem A 113:4772–4779CrossRefGoogle Scholar
  40. 40.
    Tachikawa H (2004). J Phys Chem A 108:7853–7862CrossRefGoogle Scholar
  41. 41.
    Yamaguchi S, Kudoh S, Kawai Y, Okada Y, Orii T, Takeuchi K (2003). Chem Phys Lett 377:37–42CrossRefGoogle Scholar
  42. 42.
    Herr JD, Talbot J, Steele RP (2015). J Phys Chem A 119:752–766CrossRefPubMedGoogle Scholar
  43. 43.
    Lu EP, Pan PR, Li YC, Tsai MK, Kuo JL (2014). Phys Chem Chem Phys 16:18888–18895CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Talbot JJ, Cheng XL, Herr JD, Steele RP (2016). J Am Chem Soc 138:11936–11945CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tachikawa H, Takada T (2015). RSC Adv 5:6945–6953CrossRefGoogle Scholar
  46. 46.
    Chipman DM (2016). J Phys Chem A 120:9618–9624CrossRefPubMedGoogle Scholar
  47. 47.
    Tachikawa H, Takada T (2016). Chem Phys 475:9–13CrossRefGoogle Scholar
  48. 48.
    Furuhama A, Dupuis M, Hirao K (2006). J Chem Phys 124:164310CrossRefPubMedGoogle Scholar
  49. 49.
    Heine N, Fagiani MR, Asmis KR (2015). J Phys Chem Lett 6:2298–2304CrossRefPubMedGoogle Scholar
  50. 50.
    Wang YC, Lv JA, Zhu L, Ma YM (2010). Phys Rev B 82:094116CrossRefGoogle Scholar
  51. 51.
    Abraham NL, Probert MIJ (2006). Phys Rev B 73:224104CrossRefGoogle Scholar
  52. 52.
    Abraham NL, Probert MIJ (2008). Phys Rev B 77:134117CrossRefGoogle Scholar
  53. 53.
    Trimarchi G, Zunger A (2007). Phys Rev B 75:104113CrossRefGoogle Scholar
  54. 54.
    Hohenberg P, Kohn W (1964). Phys Rev 136:B864–B871CrossRefGoogle Scholar
  55. 55.
    Kohn W, Sham LJ (1965). Phys Rev 140:1133–1142CrossRefGoogle Scholar
  56. 56.
    Parr RG (1989) Density functional theory of atoms and molecules. Oxford University Press, pp 2522–2526Google Scholar
  57. 57.
    Reinhold J (1990). Cryst Res Technol 25:624–624CrossRefGoogle Scholar
  58. 58.
    Headgordon M, Pople JA, Frisch MJ (1988). Chem Phys Lett 153:503–506CrossRefGoogle Scholar
  59. 59.
    Saebo S, Almlof J (1989). Chem Phys Lett 154:83–89CrossRefGoogle Scholar
  60. 60.
    Frisch MJ, Headgordon M, Pople JA (1990). Chem Phys Lett 166:275–280CrossRefGoogle Scholar
  61. 61.
    Frisch MJ, Headgordon M, Pople JA (1990). Chem Phys Lett 166:281–289CrossRefGoogle Scholar
  62. 62.
    Headgordon M, Headgordon T (1994). Chem Phys Lett 220:122–128CrossRefGoogle Scholar
  63. 63.
    Shin I, Park M, Min SK, Lee EC, Suh SB, Kim KS (2006). J Chem Phys 125:234305CrossRefPubMedGoogle Scholar
  64. 64.
    Park M, Shin I, Singh NJ, Kim KS (2007). J Phys Chem A 111:10692–10702CrossRefPubMedGoogle Scholar
  65. 65.
    Wang ZQ, Hu CE, Chen XR, Cheng Y, Chen QF (2017, 1118). Comput.Theor. Chem:94–106Google Scholar
  66. 66.
    Wong MW, Radom L (1995). J Phys Chem 102:2237–2245CrossRefGoogle Scholar
  67. 67.
    Hehre WJ (1976). Acc Chem Res 9:399–406CrossRefGoogle Scholar
  68. 68.
    Lee HM, Kim KS (2011). Theor Chem Accounts 130:543–548CrossRefGoogle Scholar
  69. 69.
    Smith DGA, Burns LA, Patkowski K, Sherrill CD (2016). J Phys Chem Lett 7:2197–2203CrossRefPubMedGoogle Scholar
  70. 70.
    Farrokhpour H, Jouypazadeh H (2017). Chem Phys 488-489:1–10CrossRefGoogle Scholar
  71. 71.
    Novakovskaya YV, Stepanov NF (1997). Int J Quantum Chem 61:981–990CrossRefGoogle Scholar
  72. 72.
    M.J. Frisch GWT, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al. ( CT, 2009.). Gaussian, Inc., WallingfordGoogle Scholar
  73. 73.
    Lu T, Chen FW (2012). J Comput Chem 33:580–592CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Humphrey W, Dalke A, Schulten K (1996). J Mol Graph Model 14:33–38CrossRefGoogle Scholar
  75. 75.
    Tsai CJ, Jordan KD (1993). J Phys Chem 97:5208–5210CrossRefGoogle Scholar
  76. 76.
    Sremaniak LS, Perera L, Berkowitz ML (1996). J Chem Phys 105:3715–3721CrossRefGoogle Scholar
  77. 77.
    Maheshwary S, Patel N, Sathyamurthy N, Kulkarni AD, Gadre SR (2001). J Phys Chem A 105:10525–10537CrossRefGoogle Scholar
  78. 78.
    Shi Q, Kais S, Francisco JS (2005). J Phys Chem A 109:12036–12045CrossRefPubMedGoogle Scholar
  79. 79.
    Miyazaki M, Fujii A, Ebata T, Mikami N (2004). Science 304:1134–1137CrossRefPubMedGoogle Scholar
  80. 80.
    Shin JW, Hammer NI, Diken EG, Johnson MA, Walters RS, Jaeger TD, Duncan MA, Christie RA, Jordan KD (2004). Science 304:1137–1140CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Mizuse K, Mikami N, Fujii A (2010). Angew. Chem. Int. Ed 49:10119–10122CrossRefGoogle Scholar
  82. 82.
    Lee HM, Kim KS (2013). J Comput Chem 34:1589–1597CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lin CK, Wu CC, Wang YS, Lee YT, Chang HC, Kuo JL, Klein ML (2005). Phys Chem Chem Phys 7:938–944CrossRefPubMedGoogle Scholar
  84. 84.
    Hoffmann R (1982). Angew. Chem. Int. Ed. Engl, 21: 711–724Google Scholar
  85. 85.
    Do H, Besley NA (2013). Phys Chem Chem Phys 15:16214–16219CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Andersson MP, Uvdal P (2005). J Phys Chem A 109:2937–2941CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang WT (2010). J Am Chem Soc 132:6498–6506CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Cioslowski J (1991). Science 252:1566–1567CrossRefGoogle Scholar
  89. 89.
    Parthasarathi R, Subramanian V, Sathyamurthy N (2006). J Phys Chem A 110:3349–3351CrossRefPubMedGoogle Scholar
  90. 90.
    Mata I, Alkorta I, Molins E, Espinosa E (2010). Chem. Eur. J 16:2442–2452CrossRefPubMedGoogle Scholar
  91. 91.
    Ramirez F, Hadad CZ, Guerra D, David J, Restrepo A (2011). Chem Phys Lett 507:229–233CrossRefGoogle Scholar
  92. 92.
    Espinosa E, Molins E, Lecomte C (1998). Chem Phys Lett 285:170–173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular Physics, College of Physical Science and TechnologySichuan UniversityChengduChina
  2. 2.School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuoChina
  3. 3.College of Physics and Electronic EngineeringChongqing Normal UniversityChongqingChina

Personalised recommendations