Structural Chemistry

, Volume 30, Issue 1, pp 151–165 | Cite as

Ab initio investigation of possible lower-energy candidate structure for cationic water cluster (H2O) 12+ via particle swarm optimization method

  • Wang Zhao-Qi
  • Wang Hai-Yan
  • Zhao-Yi ZengEmail author
  • Cheng YanEmail author
Original Research


Detecting the underlying performance of hydrated electrons and hydroxyl radicals in the cationic water cluster can greatly help to understand the inter reaction mechanism in the liquid water and aqueous solutions. Based on our previous (H2O)10+ research, we have paid attention to more problems of larger cationic clusters in this work, including the existence of hemibonded type, long-range correction functions, and hydrogen-bonded site analyses. The lower-energy structures of the cationic water cluster (H2O)12+ have been comprehensively explored, and more experienced functions are introduced to check the ground state and vibration spectrum. Unlike the configuration regularity of neutral (H2O)12 clusters and small cationic water clusters, those new-found structures for (H2O)12+ are inclined to adopt three dimension (3D) cage-like structures and the H2O-OH2 structure appears in the higher energy isomer. The calculation reveals that the lowest stable isomer is the 3D cage structure W14 predicted at MP2 level, which has not been reported yet. In the thermal simulation, structure transition from the cage-like to the ring-like occurs at T > ≈256 K, and the two dimension (2D) ring-like structure occupies a dominant position at high temperature range. The infrared spectra explain that the difference of the spectra between the 2D net structures and 3D cage-structures is mainly caused by the weight fluctuation of single acceptor-single donor (AD), double acceptor-single donor (AAD), and single acceptor-double donor (ADD) sites in these isomers. This further gives a similarity relation between (H2O)12+ and H+(H2O)12 clusters in the shape of the network and spectral characteristics. By molecular orbitals and topological analysis, we find that the lone pair orbital on hydroxyl radical dominates the reactivity and stability of cationic system. The present research may be helpful for exploring the evolution law of the larger cationic water clusters in the future.


(H2O)12+ Population probability Infrared spectra Singly occupied orbital Topological analysis 



The authors would like to thank the supports by the Science Challenge Project (Grant No. TZ2016001) and the NSAF (Grant No. U1830101). We also acknowledge the support for the computational resources by the State Key Laboratory of Polymer Materials Engineering of China in Sichuan University. Some calculations are performed on the ScGrid of Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2018_1182_MOESM1_ESM.doc (117 kb)
ESM 1 (DOC 117 kb)


  1. 1.
    Meyer TJ (2008). Nature 451:778–779PubMedGoogle Scholar
  2. 2.
    Vaida V (2011). J Chem Phys 135:020901PubMedGoogle Scholar
  3. 3.
    Garrett BC et al (2005). Chem Rev 105:355–389PubMedGoogle Scholar
  4. 4.
    Domaracka A, Capron M, Maclot S, Chesnel J-Y, Méry A, Poully J-C, Rangama J, Adoui L, Rousseau P, Huber BA (2012). J. Phys.: Conf. Ser 373:012005Google Scholar
  5. 5.
    Alizadeh E, Sanche L (2012). Chem Rev 112:5578–5602PubMedGoogle Scholar
  6. 6.
    Wang D, Li R, Zhu J, Shi J, Han J, Zong X, Li C (2012). J Phys Chem C 116:5082–5089Google Scholar
  7. 7.
    Leonard KC, Nam KM, Lee HC, Kang SH, Park HS, Bard AJ (2013). J Phys Chem C 117:15901–15910Google Scholar
  8. 8.
    Zhang Q-H, Han W-D, Hong Y-J, Yu J-G (2009) Catal. Today 148:335–340Google Scholar
  9. 9.
    Chen ZF, Concepcion JJ, Luo HL, Hull JF, Paul A, Meyer TJ (2010). J Am Chem Soc 132:17670–17673PubMedGoogle Scholar
  10. 10.
    Karunadasa HI, Chang CJ, Long JR (2010). Nature 464:1329–1333PubMedGoogle Scholar
  11. 11.
    Devisser SP, Dekoning LJ, Nibbering NMM (1995). J Phys Chem 99:15444–15447Google Scholar
  12. 12.
    Lee HM, Kumar A, Kolaski M, Kim DY, Lee EC, Min SK, Park M, Choi YC, Kim KS (2010). Phys Chem Chem Phys 12:6278–6287PubMedGoogle Scholar
  13. 13.
    Periyasamy G, Levine RD, Remacle F (2009). Chem Phys 366:129–138Google Scholar
  14. 14.
    Yourey JE, Pyper KJ, Kurtz JB, Bartlett BM (2013). J Phys Chem C 117:8708–8718Google Scholar
  15. 15.
    Bednarek J, Plonka A, Hallbrucker A, Mayer E (1998). Radiat Phys Chem 53:635–638Google Scholar
  16. 16.
    Herr JD, Steele RP (2016). J Phys Chem A 120:7225–7239PubMedGoogle Scholar
  17. 17.
    Yan Z, Sweasy JB (2009). Radiat Res 171:636–636Google Scholar
  18. 18.
    Wang CR, Nguyen J, Lu QB (2009). J Am Chem Soc 131:11320–11322PubMedGoogle Scholar
  19. 19.
    Cheng QY, Evangelista FA, Simmonett AC, Yamaguchi Y, Schaefer HF (2009). J Phys Chem A 113:13779–13789PubMedGoogle Scholar
  20. 20.
    Valeev EF, Schaefer HF (1998). J Chem Phys 108:7197–7201Google Scholar
  21. 21.
    Haberland H, Langosch H (1986) Z. Phys. D: At., Mol. Clusters 2:243–247Google Scholar
  22. 22.
    Shinohara H, Nishi N, Washida N (1986). J Chem Phys 84:5561–5567Google Scholar
  23. 23.
    Jongma RT, Huang YH, Shi SM, Wodtke AM (1998). J Phys Chem A 102:8847–8854Google Scholar
  24. 24.
    Mizuse K, Kuo J-L, Fujii A (2011). Chem Sci 2:868–876Google Scholar
  25. 25.
    Mizuse K, Fujii A (2013). J Phys Chem A 117:929–938PubMedGoogle Scholar
  26. 26.
    Sodupe M, Bertran J, Rodriguez-Santiago L, Baerends EJ (1999). J Phys Chem A 103:166–170Google Scholar
  27. 27.
    Grafenstein J, Kraka E, Cremer D (2004). Phys Chem Chem Phys 6:1096–1112Google Scholar
  28. 28.
    Grafenstein J, Kraka E, Cremer D (2004). J Chem Phys 120:524–539PubMedGoogle Scholar
  29. 29.
    Lee HM, Kim KS (2009). J Chem Theory Comput 5:976–981PubMedGoogle Scholar
  30. 30.
    Kamarchik E, Kostko O, Bowman JM, Ahmed M, Krylov AI (2010). J Chem Phys 132:194311PubMedGoogle Scholar
  31. 31.
    Lee HM, Kim KS (2013). J Comput Chem 34:1589–1597PubMedGoogle Scholar
  32. 32.
    Do H, Besley NA (2013). J Phys Chem A 117:5385–5391PubMedGoogle Scholar
  33. 33.
    Lv J, Wang YC, Zhu L, Ma YM (2012). J Chem Phys 137:084104PubMedGoogle Scholar
  34. 34.
    Lv ZL, Xu K, Cheng Y, Chen XR, Cai LC (2014). J Chem Phys 141:054309PubMedGoogle Scholar
  35. 35.
    Liu L, Hu CE, Tang M, Chen XR, Cai LC (2016). J Chem Phys 145:154307PubMedGoogle Scholar
  36. 36.
    Tang M, Hu CE, Lv ZL, Chen XR, Cai LC (2016). J Phys Chem A 120:9489–9499PubMedGoogle Scholar
  37. 37.
    Chen WQ, Fu M, Wang HY, Zeng ZY, Yu BR (2018). Struct Chem.
  38. 38.
    Angel L, Stace A (2001). Chem Phys Lett 345:277–281Google Scholar
  39. 39.
    Gardeinier GH, Johnson MA, McCoy AB (2009). J Phys Chem A 113:4772–4779Google Scholar
  40. 40.
    Tachikawa H (2004). J Phys Chem A 108:7853–7862Google Scholar
  41. 41.
    Yamaguchi S, Kudoh S, Kawai Y, Okada Y, Orii T, Takeuchi K (2003). Chem Phys Lett 377:37–42Google Scholar
  42. 42.
    Herr JD, Talbot J, Steele RP (2015). J Phys Chem A 119:752–766PubMedGoogle Scholar
  43. 43.
    Lu EP, Pan PR, Li YC, Tsai MK, Kuo JL (2014). Phys Chem Chem Phys 16:18888–18895PubMedGoogle Scholar
  44. 44.
    Talbot JJ, Cheng XL, Herr JD, Steele RP (2016). J Am Chem Soc 138:11936–11945PubMedGoogle Scholar
  45. 45.
    Tachikawa H, Takada T (2015). RSC Adv 5:6945–6953Google Scholar
  46. 46.
    Chipman DM (2016). J Phys Chem A 120:9618–9624PubMedGoogle Scholar
  47. 47.
    Tachikawa H, Takada T (2016). Chem Phys 475:9–13Google Scholar
  48. 48.
    Furuhama A, Dupuis M, Hirao K (2006). J Chem Phys 124:164310PubMedGoogle Scholar
  49. 49.
    Heine N, Fagiani MR, Asmis KR (2015). J Phys Chem Lett 6:2298–2304PubMedGoogle Scholar
  50. 50.
    Wang YC, Lv JA, Zhu L, Ma YM (2010). Phys Rev B 82:094116Google Scholar
  51. 51.
    Abraham NL, Probert MIJ (2006). Phys Rev B 73:224104Google Scholar
  52. 52.
    Abraham NL, Probert MIJ (2008). Phys Rev B 77:134117Google Scholar
  53. 53.
    Trimarchi G, Zunger A (2007). Phys Rev B 75:104113Google Scholar
  54. 54.
    Hohenberg P, Kohn W (1964). Phys Rev 136:B864–B871Google Scholar
  55. 55.
    Kohn W, Sham LJ (1965). Phys Rev 140:1133–1142Google Scholar
  56. 56.
    Parr RG (1989) Density functional theory of atoms and molecules. Oxford University Press, pp 2522–2526Google Scholar
  57. 57.
    Reinhold J (1990). Cryst Res Technol 25:624–624Google Scholar
  58. 58.
    Headgordon M, Pople JA, Frisch MJ (1988). Chem Phys Lett 153:503–506Google Scholar
  59. 59.
    Saebo S, Almlof J (1989). Chem Phys Lett 154:83–89Google Scholar
  60. 60.
    Frisch MJ, Headgordon M, Pople JA (1990). Chem Phys Lett 166:275–280Google Scholar
  61. 61.
    Frisch MJ, Headgordon M, Pople JA (1990). Chem Phys Lett 166:281–289Google Scholar
  62. 62.
    Headgordon M, Headgordon T (1994). Chem Phys Lett 220:122–128Google Scholar
  63. 63.
    Shin I, Park M, Min SK, Lee EC, Suh SB, Kim KS (2006). J Chem Phys 125:234305PubMedGoogle Scholar
  64. 64.
    Park M, Shin I, Singh NJ, Kim KS (2007). J Phys Chem A 111:10692–10702PubMedGoogle Scholar
  65. 65.
    Wang ZQ, Hu CE, Chen XR, Cheng Y, Chen QF (2017, 1118). Comput.Theor. Chem:94–106Google Scholar
  66. 66.
    Wong MW, Radom L (1995). J Phys Chem 102:2237–2245Google Scholar
  67. 67.
    Hehre WJ (1976). Acc Chem Res 9:399–406Google Scholar
  68. 68.
    Lee HM, Kim KS (2011). Theor Chem Accounts 130:543–548Google Scholar
  69. 69.
    Smith DGA, Burns LA, Patkowski K, Sherrill CD (2016). J Phys Chem Lett 7:2197–2203PubMedGoogle Scholar
  70. 70.
    Farrokhpour H, Jouypazadeh H (2017). Chem Phys 488-489:1–10Google Scholar
  71. 71.
    Novakovskaya YV, Stepanov NF (1997). Int J Quantum Chem 61:981–990Google Scholar
  72. 72.
    M.J. Frisch GWT, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al. ( CT, 2009.). Gaussian, Inc., WallingfordGoogle Scholar
  73. 73.
    Lu T, Chen FW (2012). J Comput Chem 33:580–592PubMedGoogle Scholar
  74. 74.
    Humphrey W, Dalke A, Schulten K (1996). J Mol Graph Model 14:33–38Google Scholar
  75. 75.
    Tsai CJ, Jordan KD (1993). J Phys Chem 97:5208–5210Google Scholar
  76. 76.
    Sremaniak LS, Perera L, Berkowitz ML (1996). J Chem Phys 105:3715–3721Google Scholar
  77. 77.
    Maheshwary S, Patel N, Sathyamurthy N, Kulkarni AD, Gadre SR (2001). J Phys Chem A 105:10525–10537Google Scholar
  78. 78.
    Shi Q, Kais S, Francisco JS (2005). J Phys Chem A 109:12036–12045PubMedGoogle Scholar
  79. 79.
    Miyazaki M, Fujii A, Ebata T, Mikami N (2004). Science 304:1134–1137PubMedGoogle Scholar
  80. 80.
    Shin JW, Hammer NI, Diken EG, Johnson MA, Walters RS, Jaeger TD, Duncan MA, Christie RA, Jordan KD (2004). Science 304:1137–1140PubMedGoogle Scholar
  81. 81.
    Mizuse K, Mikami N, Fujii A (2010). Angew. Chem. Int. Ed 49:10119–10122Google Scholar
  82. 82.
    Lee HM, Kim KS (2013). J Comput Chem 34:1589–1597PubMedGoogle Scholar
  83. 83.
    Lin CK, Wu CC, Wang YS, Lee YT, Chang HC, Kuo JL, Klein ML (2005). Phys Chem Chem Phys 7:938–944PubMedGoogle Scholar
  84. 84.
    Hoffmann R (1982). Angew. Chem. Int. Ed. Engl, 21: 711–724Google Scholar
  85. 85.
    Do H, Besley NA (2013). Phys Chem Chem Phys 15:16214–16219PubMedGoogle Scholar
  86. 86.
    Andersson MP, Uvdal P (2005). J Phys Chem A 109:2937–2941PubMedGoogle Scholar
  87. 87.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang WT (2010). J Am Chem Soc 132:6498–6506PubMedPubMedCentralGoogle Scholar
  88. 88.
    Cioslowski J (1991). Science 252:1566–1567Google Scholar
  89. 89.
    Parthasarathi R, Subramanian V, Sathyamurthy N (2006). J Phys Chem A 110:3349–3351PubMedGoogle Scholar
  90. 90.
    Mata I, Alkorta I, Molins E, Espinosa E (2010). Chem. Eur. J 16:2442–2452PubMedGoogle Scholar
  91. 91.
    Ramirez F, Hadad CZ, Guerra D, David J, Restrepo A (2011). Chem Phys Lett 507:229–233Google Scholar
  92. 92.
    Espinosa E, Molins E, Lecomte C (1998). Chem Phys Lett 285:170–173Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular Physics, College of Physical Science and TechnologySichuan UniversityChengduChina
  2. 2.School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuoChina
  3. 3.College of Physics and Electronic EngineeringChongqing Normal UniversityChongqingChina

Personalised recommendations