Theoretical study on the gas-phase reaction of acetaldehyde with methoxy radical


The reaction of acetaldehyde with methoxy radical has been investigated theoretically by means of quantum chemistry methods at the BMC-QCISD//B3LYP/6-311+G(d,p) level. The title reaction included three manners, namely, H-abstraction, C-addition-elimination, and C-addition-isomerization-elimination. Based on our calculated results, the formation of adduct IM1 is not a nucleophilic addition reaction, but a π addition reaction. Rice–Ramsperger–Kassel–Marcus-transition state theory calculations are carried out for the total and individual rate constants of the determinant channels over a wide range of temperatures and pressures. The major products for the title reaction are CH3CO and CH3OH. The calculated rate constant (8.73 × 10−15 cm3 molecule−1 s−1) agrees well with the experimental value (k1 = 8.30 × 10−15 cm3 molecule−1 s−1 and 4.23 × 10−15 cm3 molecule−1 s−1).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Marenich AV, Boggs JE (2006) The molecular structure, spin-vibronic energy levels, and thermochemistry of CH3O. J Mol Struct 780-781:163–170

    CAS  Article  Google Scholar 

  2. 2.

    Atkinson R (1990) Gas-phase tropospheric chemistry of organic compounds: a review. Atmos Environ Part A Gen Top 24A:1–41

    CAS  Article  Google Scholar 

  3. 3.

    Guenther A (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892;

  4. 4.

    Hoekman SK (1992) Speciated measurements and calculated reactivities of vehicle exhaust emissions from conventional and reformulated gasolines. Environ Sci Technol 26:1206–1216

    CAS  Article  Google Scholar 

  5. 5.

    Kesselmeier J, Bode K, Hofmann U, Müller H, Schäfer L, Wolf A, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Foster P, Ferrari C, Jacob V, Fugit JL, Dutaur L, Simon V, Torres L (1997) Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmos Environ 31:119–133

    CAS  Article  Google Scholar 

  6. 6.

    Nondek L, Rodler DR, Birks JW (1992) Measurement of sub-ppbv concentrations of aldehydes in a forest atmosphere using a new HPLC technique. Environ. Sci. Technol. 26:1174–1178

    CAS  Article  Google Scholar 

  7. 7.

    Weaver J, Meagher J, Shortridge R, Heicklen J (1975) The oxidation of acetyl radicals. J Photochem 4:341–360

    CAS  Article  Google Scholar 

  8. 8.

    Kelly N, Heicklen J (1978) Rate coefficient for the reaction of CH3O with CH3OCHO at 25 °C. J Photochem 8:83–90

    CAS  Article  Google Scholar 

  9. 9.

    Fittschen C, Delcroix B, Gomez N, Devolder P (1998) Rate constants for the reactions of CH3O with CH2O, CH3CHO and i-C4H10. J Chim Phys 95:2129–2142

    CAS  Article  Google Scholar 

  10. 10.

    Henon E, Bohr F (2001) Theoretical study of the H-abstraction reaction of the CH3O radical with formaldehyde. Chem Phys Lett 342:659–666

    CAS  Article  Google Scholar 

  11. 11.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc, Wallingford CT, 2009

  12. 12.

    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–5652

    CAS  Article  Google Scholar 

  13. 13.

    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789

    CAS  Article  Google Scholar 

  14. 14.

    Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506

    CAS  Article  Google Scholar 

  15. 15.

    Gonzalez C, Bernhard Schlegel H (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    CAS  Article  Google Scholar 

  16. 16.

    Lynch BJ, Zhao Y, Truhlar DG (2005) The 6-31B(d) basis set and the BMC-QCISD and BMC-CCSD multicoefficient correlation methods. J. Phys. Chem. A . 109:1643–1649

  17. 17.

    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483

    CAS  Article  Google Scholar 

  18. 18.

    Knowles PJ, Hampel C, Werner HJ (1993) Coupled cluster theory for high spin, open shell reference wave functions. J Chem Phys 99:5219–5227

    CAS  Article  Google Scholar 

  19. 19.

    Lee TJ, Rice JE, Scuseria GE, Schaefer III HF (1989) Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: determination of the equilibrium structures of FOOF, (NO)2 and FNNF and the transition state structure for FNNF cis-trans isomerization. Theor Chim Acta 75:81–98

    CAS  Article  Google Scholar 

  20. 20.

    Lee TJ, Taylor PR (1989) A diagnostic for determining the quality of single-reference electron correlation methods. Int J Quantum Chem S23:199–207

    Google Scholar 

  21. 21.

    Truhlar DG, Garrett BC (1980) Variational transition-state theory. Accounts Chem Res 13:440–448

    CAS  Article  Google Scholar 

  22. 22.

    Garrett BC, Truhlar DG (1979) Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules. J Chem Phys 83:1052–1079

    CAS  Article  Google Scholar 

  23. 23.

    Sun JY, Tang YZ, Jia XJ, Wang F, Sun H, Feng JD, Pan XM, Hao LZ, Wang RS (2010) Theoretical study for the reaction of CH3CN with O(3P). J Chem Phys 132:064301–064333

    Article  Google Scholar 

  24. 24.

    Sun JY, Tang YZ, Jia XJ, Wang F, Sun H, Zhang YJ, Tang SW, Wang FD, Chang YF, Lu YJ, Pan XM, Zhang JP, Wang RS (2010) Computational study of oxygen atom (3P and 1D) reactions with CF3CN. Phys Chem Chem Phys 12:10846–10856

    CAS  Article  Google Scholar 

  25. 25.

    Wang F, Sun H, Sun JY, Jia XJ, Zhang YJ, Tang YZ, Pan XM, Su ZM, Hao LZ, Wang RS (2010) Mechanistic and kinetic study of CH2O+O3 reaction. J Phys Chem A 114:3516–3522

    CAS  Article  Google Scholar 

  26. 26.

    Klippenstein SJ (1992) Variational optimizations in the Rice-Ramsberger-Kassel-Marcus theory calculations for unimolecular dissociations with no reverse barrier. J Chem Phys 96:367–371

    Article  Google Scholar 

  27. 27.

    Klippenstein SJ, Marcus RA (1987) High pressure rate constants for unimolecular dissociation/free radical recombination: determination of the quantum correction via quantum Monte Carlo path integration. J Chem Phys 87:3410–3417

    CAS  Article  Google Scholar 

  28. 28.

    Wardlaw DM, Marcus RA (1984) RRKM reaction rate theory for transition states of any looseness. Chem Phys Lett 110:230–234

    CAS  Article  Google Scholar 

  29. 29.

    NIST Computational Chemistry Comparison and Benchmark Database.

  30. 30.

    Donnelly RA, Parr RG (1978) Elementary properties of an energy functional of the first-order reduced density matrix. J Chem Phys 69:4431–4439

    CAS  Article  Google Scholar 

  31. 31.

    Nalewajski RF, Parr RG (1982) Legendre transforms and Maxwell relations in density functional theory. J Chem Phys 77:399–407

    CAS  Article  Google Scholar 

  32. 32.

    Anderson JSM, Melin J, Ayers PW (2007) Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor frontier-orbital-controlled. 1. Theory and derivation of a general-purpose reactivity indicator. J Chem Theory Comput 3:358–374

    CAS  Article  Google Scholar 

  33. 33.

    Parr R, How G (2009) I came about working in conceptual DFT. Chemical reactivity theory: A density functional theory view

  34. 34.

    Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113

    Article  Google Scholar 

  35. 35.

    Zhang Y, Yang W (2000) Perspective on “Density-functional theory for fractional particle number: derivative discontinuities of the energy”. Theor Chem Accounts 103:346–348

    CAS  Article  Google Scholar 

  36. 36.

    Bersuker IB (2001) Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. Chem Rev 101:1067–1114

    CAS  Article  Google Scholar 

  37. 37.

    Barckholtz TA, Miller TA (1998) Quantitative insights about molecules exhibiting Jahn-Teller and related effects. Int Rev Phys Chem 17:435–524

    CAS  Article  Google Scholar 

  38. 38.

    Stein SE, Rabinovitch BS (1973) Accurate evaluation of internal energy level sums and densities including anharmonic oscillators and hindered rotors. J Chem Phys 58:2438–2445

    CAS  Article  Google Scholar 

  39. 39.

    Astholz DC, Troe J, Wieters W (1979) Unimolecular processes in vibrationally highly excited cycloheptatrienes. I. Thermal isomerization in shock waves. J Chem Phys 70:5107–5116

    CAS  Article  Google Scholar 

  40. 40.

    Smith IWM (1980) Kinetics and dynamics of elementary gas reactions; Butterworth, London, p118

  41. 41.

    Johnston HS, Heicklen J (1962) Tunnelling corrections for unsymmetrical Eckart potential energy barriers. J Phys Chem 66:532–533

    Article  Google Scholar 

  42. 42.

    Eckart C (1930) The penetration of a potential barrier by electrons. Phys Rev 35:1303–1309

    CAS  Article  Google Scholar 

  43. 43.

    Johnston HS, Heicklen J (1962) Tunnelling corrections for unsymmetrical Eckart potential energy barriers. J PhysChem 66:532–533

    Google Scholar 

Download references


This work was supported by the Natural Science Foundations of China (No. 21707062), Scientific Research Starting Foundation of Mianyang Normal University (No. QD2016A007), and Sichuan Education Department Fund (No. 17ZB0207).

This work was also supported by Sichuan Education Department Fund (No. 12ZA080) and Mianyang Normal University for Excellent Plan Fund (No. QD2012A06) and supported by the Open Project Program of Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China.

Author information



Corresponding author

Correspondence to Yunju Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material


(DOCX 9133 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Song, R., Sun, Y. et al. Theoretical study on the gas-phase reaction of acetaldehyde with methoxy radical. Struct Chem 30, 127–135 (2019).

Download citation


  • Acetaldehyde
  • Methoxy radical
  • PES
  • RRKM