Are there analogues of the indenyl effect in larger ring systems: a DFT study of hydride attack on [Mn(CO)3(naphthalene)]+ and [Cr(CO)3(benzotropylium)]+

Abstract

Two pairs of complexes, [Mn(CO)3(benzene)]+/[Mn(CO)3(naphthalene)]+ and [Cr(CO)3(tropylium)]+/[Cr(CO)3(benzotropylium)]+, have been used as a platform to establish the extent to which the well-known ‘indenyl effect’ translates into other bicyclic ligand systems. Density functional theory (DFT) suggests that the ‘naphthalene effect’ is minimal, the pathway for hydride reduction of [Mn(CO)3(naphthalene)]+ resembling closely that for the benzene analogue. In the benzotropylium system, in contrast, stabilisation of an η5 coordination mode through aromatisation of the six-membered ring plays a similar role to stabilisation of η3 in the indenyl effect. The greater influence of aromatisation in the five- and seven-membered ring systems stems from the presence of formal charge on the ligands in these cases: localisation of this charge on a subset of the available carbon atoms enhances the electrostatic component of the metal-ligand bond. This is particularly dramatic in the benzotropylium case, where the η7–η5 slippage corresponds to a formal 2-electron reduction of the ligand from [C7H7]+ to [C7H7].

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3

References

  1. 1.

    Ahmed H, McGrady JE (2008). J Organomet Chem 693:3697–3702

    CAS  Article  Google Scholar 

  2. 2.

    Brown DA, Glass WK, Ubeid MT (1994). Inorg Chim Acta 89:L47–L48

    Article  Google Scholar 

  3. 3.

    Ahmed H, Brown DA, Fitzpatrick NJ, Glass WK (1989). Inorg Chim Acta 164:5–6

    CAS  Article  Google Scholar 

  4. 4.

    Ahmed H, Brown DA, Fitzpatrick NJ, Glass WK (1991). J Organomet Chem 418:C14–C16

    CAS  Article  Google Scholar 

  5. 5.

    Brown DA, Glass WK, Salama MM (1994). J Organomet Chem 474:129–132

    CAS  Article  Google Scholar 

  6. 6.

    Rerek ME, Basolo FJ (1984). J Am Chem Soc 106:5908–5912

    CAS  Article  Google Scholar 

  7. 7.

    Calhorda MJ, Veiros LF (1999). Coord Chem Rev 185:37–51

    Article  Google Scholar 

  8. 8.

    Calhorda MJ, Romao CC, Veiros LF (2002). Chem Eur J 8:868–875

    CAS  Article  Google Scholar 

  9. 9.

    Gomes CSB, Costa SI, Silva LC, Jimenez-Tenorio M, Valerga P, Puerta MC (2018). P T Gomes Eur J Inorg Chem 2018:597–607

    CAS  Article  Google Scholar 

  10. 10.

    Baker RW (2018). Organometallics 37:433–440

    CAS  Article  Google Scholar 

  11. 11.

    Sun S, Yeung LK, Sweigart DA (1995). Organometallics 14:2613–2615

    CAS  Article  Google Scholar 

  12. 12.

    Stanghellini PL, Diana E, Arrais A, Rossin A, Kettle SFA (2006). Organometallics 25:5024–5030

    CAS  Article  Google Scholar 

  13. 13.

    Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds. John Wiley, New York

    Google Scholar 

  14. 14.

    Frenking G, Fröhlich N (2000). Chem Rev 100:717–−774

    CAS  Article  Google Scholar 

  15. 15.

    Zhou M, Andrews L (2001). C W Bauschlicher Chem Rev 101:1931–1962

    CAS  Article  Google Scholar 

  16. 16.

    Becke AD (1988). Phys Rev A 38:3098–3100

    CAS  Article  Google Scholar 

  17. 17.

    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789

    CAS  Article  Google Scholar 

  18. 18.

    Miehich B, Savin A, Stoll H (1989). Chem Phys Lett 157:200–206

    Article  Google Scholar 

  19. 19.

    Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990). Theor Chim Acta 77:123–141

    CAS  Article  Google Scholar 

  20. 20.

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A.Pople. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT., 2013

  21. 21.

    Dapprich S, Frenking G (1995). J Phys Chem 99:9352–9362

    CAS  Article  Google Scholar 

  22. 22.

    Chen LF (2012). J Comput Chem 33:580–592

    Article  Google Scholar 

  23. 23.

    Davison A, Green M, Wilkinson G (1961). J Chem Soc:3172–3177

  24. 24.

    A. A. Ahmed. Ph.D. thesis, National University of Ireland., 1991

  25. 25.

    Winkhaus G, Pratt L, Wilkinson G (1960). J Chem Soc:3807–3813

  26. 26.

    Thompson RL, Lee S, Rheingold AL, Cooper NJ (1991). Organometallics 10:1657–1659

    CAS  Article  Google Scholar 

  27. 27.

    Reingold JA, Virkaitis KL, Carpenter GB, Sun S, Weigart SDA, Czech PT, Overly KR (2005). J Am Chem Soc:12711146–12711158

  28. 28.

    Behrens U, Kopf J, Lal K, Watts WE (1984). J Organomet Chem 276:193–198

    CAS  Article  Google Scholar 

  29. 29.

    Veiros LF (2000). Organometallics 19:3127–3136

    CAS  Article  Google Scholar 

  30. 30.

    Chatt J, Duncanson LD (1953). J Chem Soc:2939–2947

Download references

Acknowledgments

The author is indebted to Professor J. E. McGrady and his group at theoretical chemistry laboratory, Oxford University, for their assistance throughout the work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdulhakim A. Ahmed.

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.A. Are there analogues of the indenyl effect in larger ring systems: a DFT study of hydride attack on [Mn(CO)3(naphthalene)]+ and [Cr(CO)3(benzotropylium)]+. Struct Chem 30, 107–114 (2019). https://doi.org/10.1007/s11224-018-1179-0

Download citation

Keywords

  • Indenyl effect
  • DFT
  • Naphthalene effect
  • Tropylium and hydride attack