Electrostatic, sequential bond energies and structures of Li+·(N2)n complexes: computational study


The MP2 and CCSD calculations of the geometries and binding energies of the Li+·(N2)n (n = 1–4) complexes are obtained. The potential energy surface showed that these complexes exhibit one minimum state and one transition state. The mono- and di-ligated complexes exhibit linear configurations with a binding energy of 11.1 and 21.2 kcal mol−1, respectively. Trigonal planar and tetrahedral configurations are obtained for tri- and tetra-ligated complexes, respectively. The computed sequential bond dissociation energies (BDEs) of Li+·(N2)n (n = 1–4) complexes are also calculated in which the mono-ligated complex has the largest BDE value. The obtained trend is mainly dependent on the variation in the ion-quadrupole interaction of these ion complexes. These calculations predict that these complexes are of purely electrostatic nature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Matsubara T, Hirao K (2003) Density functional study of the interaction of H2, N2, O2, CO and NO diatomic molecules with H, Li and F anions. Prediction of a new type of anion cluster. J Phys Chem A 107:2505–2515

    CAS  Article  Google Scholar 

  2. 2.

    Mikosch H, Uzunova EL, Nikolov GS (2005) Interaction of molecular nitrogen and oxygen with extra-framework cations in zeolites with double six-membered rings of oxygen bridged silicon and aluminum atoms: a DFT study. J Phys Chem B 109:11119–11125

    CAS  Article  Google Scholar 

  3. 3.

    Rogers MT, Armentrout PB (2000) Noncovalent metal-ligand bond energies as studied by threshold collision-induced dissociation. Mass Spectrom Rev 19:215–247

    Article  Google Scholar 

  4. 4.

    Areán CO, Nachtigallová D, Nachtigall P, Garrone E, Delgado MR (2007) Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites-the interplay of infrared spectroscopy and theoretical calculations. Phys Chem Chem Phys 9:1421–1437

    Article  Google Scholar 

  5. 5.

    Hadjiivanov K, Massiani P, Knözinger H (1999) Low temperature CO and 15N2 adsorption on alkali cation exchanged EMT zeolites: an FTIR study. Phys Chem Chem Phys 1:3831–3838

    CAS  Article  Google Scholar 

  6. 6.

    Schuster P (1981) Intermolecular forces. An example of fruitful cooperation of theory and experiment. Angew Chem Int Ed 20:546–568

    Article  Google Scholar 

  7. 7.

    Alomari MI, Dawoud JN (2010) Structure and potential energy surface of K+·CX2. J Mol Struct (THEOCHEM) 939:28–33

    CAS  Article  Google Scholar 

  8. 8.

    Soldán P, Spirko V, Lee EPF, Wright TG (1999) Structure and potential energy surface of Na+·N2. J Chem Phys 111:3420–3425

    Article  Google Scholar 

  9. 9.

    Bōttner R, Ross U, Toennies JP (1976) Measurements of rotational and vibrational quantum transition probabilities in the scattering of Li+ from N2 and CO at center of mass energies of 4.23 and 7.07 eV. J Chem Phys 65:733–746

    Article  Google Scholar 

  10. 10.

    Kita S, Noda K, Inouye H (1975) Experimental determination of repulsive potentials between alkali ions (Li+, Na+, and K+) and N2 and CO molecules. Chem Phys 7:156–160

    CAS  Article  Google Scholar 

  11. 11.

    Staemmler V (1975) Ab initio calculation of the potential energy surface of the system N2Li+. Chem Phys 7:17–29

    CAS  Article  Google Scholar 

  12. 12.

    Del Bene JE, Frisch MJ, Raghavacharj K, Pople JA, Schleyer PR (1983) A molecular orbital study of some lithium ion complexes. J Phys Chem 87:73–78

    Article  Google Scholar 

  13. 13.

    Bulanin KM, Bulychev VP, Ryazantsev MN (2008) Theoretical study of structural and energy parameters of the van der Waals complex of the Li+ cation with the N2 molecule. Opt Spectrosc 105:829–837

    CAS  Article  Google Scholar 

  14. 14.

    Alkorta I, Elguero J (2008) Cation dinitrogen complexes [N2···X···N2]+, X+ = H+, Li+, Na+, Be2+, Mg2+. Solid Stat Nuc Mag Res 34:105–109

    CAS  Article  Google Scholar 

  15. 15.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, PMW G, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.05. Gaussian, Inc, Pittsburgh

    Google Scholar 

  16. 16.

    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    CAS  Article  Google Scholar 

  17. 17.

    Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    CAS  Article  Google Scholar 

  18. 18.

    Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimmers. J Chem Phys 105:11024–11031

    CAS  Article  Google Scholar 

  19. 19.

    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies: some procedures with reduced errors. Mol Phys 19:553–566

    CAS  Article  Google Scholar 

  20. 20.

    Sizova OV (2006) The valence structure analysis for dirhodium(II) tetracarboxylato complexes with nitric oxide as axial ligand. J Mol Struct (THEOCHEM) 760:183–187

    CAS  Article  Google Scholar 

  21. 21.

    Spears KG (1972) Ion-neutral bonding. J Chem Phys 57:1850–1858

    CAS  Article  Google Scholar 

  22. 22.

    Laidler KJ, Meiser JH (1999) Physical chemistry, 3rd edition, Houghton Mifflin, USA, pp 825–826

  23. 23.

    Beegle LW, Kanik I, Matz L, Hill HH (2002) Effects of drift-gas polarizability on glycine peptides in ion mobility spectrometry. Int J Mass Spectrom 216:257–268

    CAS  Article  Google Scholar 

  24. 24.

    Lawson DB, Harrison LF (1997) Distance dependence and spatial distribution of the molecular quadrupole moments of H2, N2, O2, and F2. J Phys Chem A 101:4781–4792

    CAS  Article  Google Scholar 

  25. 25.

    Sallabi AK, Dawoud JN, Jack DB (2010) A Monte Carlo simulation study of nitrogen on LiF(001). Appl Surf Sci 256:2974–2978

    CAS  Article  Google Scholar 

  26. 26.

    Sallabi AK, Jack DB (2000) Simulation of an order-disorder transition in N2/NaCl(001) monolayer. Phys Rev B 62:R4841–R4844

    CAS  Article  Google Scholar 

Download references


JND gratefully acknowledges the financial support of the Deanship of the Scientific Research of the Hashemite University (Jordan).

Author information



Corresponding author

Correspondence to Jamal N. Dawoud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

(WMV 942 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dawoud, J.N., Alomari, M.I. Electrostatic, sequential bond energies and structures of Li+·(N2)n complexes: computational study. Struct Chem 30, 53–60 (2019). https://doi.org/10.1007/s11224-018-1147-8

Download citation


  • Non-covalent interaction
  • CCSD method
  • Bond dissociation energy
  • Lithium ion complexes
  • N2 molecule