Skip to main content
Log in

A theoretical investigation on the mechanism of cycloaddition reactions of fulvenes with tetrazine and diazacyclopentadienone derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of cycloaddition reactions for 6-dimethylaminofulvene and 6,6-diphenylfulvene with tetrazine and diazacyclopentadienone are studied by DFT at the MPWB1K/cc-pVDZ level of theory. The energy results indicated that the [6 + 4] cycloaddition reaction of 6-dimethylaminofulvene with tetrazine and diazacyclopentadienone derivatives proceeds in a stepwise fashion, while the [2 + 4] cycloaddition reaction of 6,6-diphenylfulvene might proceed in a one-step fashion. Our calculations showed some unfavorable processes with unstable cycloadducts arising from [4 + 2] cycloaddition reactions which are unobserved in the experimental results. Also, an analysis of the Parr functions for the reactants allows us to provide an explanation of the selectivity of these cycloaddition reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neuenschwander M (1989) The chemistry of double-bonded functional groups. In S Patai (Ed.), Wiley, Chichester

  2. Rawson DI, Carpenter BK, Hoffmann HR (1979) Loss of allyl cation configuration in cycloadditions to electron-rich conjugated dienes. J Am Chem Soc 101:1786–1793. https://doi.org/10.1021/ja00501a025

    Article  CAS  Google Scholar 

  3. Noyori R, Hayakawa Y, Takaya H, Murai S, Kobayashi R, Sonoda N (1978) Carbon-carbon bond formation promoted by transition metal carbonyls. 16. Reaction of α,α-dibromo ketones and iron carbonyls. Mechanistic aspects. J Am Chem Soc 100:1759–1765. https://doi.org/10.1021/ja00474a018

    Article  CAS  Google Scholar 

  4. Imafuku K, Arai K (1989) A simple and convenient synthesis of 5-alkyl-substituted 3-isopropenyl-and 3-acetyltropolones synthesis, 501–505

  5. PaquetteLA CJA, Andrews DR (1985) An oxyanionic [3,3]-sigmatropic approach to the ophiobolin ring system. J Org Chem 50:201–205. https://doi.org/10.1021/jo00202a012

    Article  Google Scholar 

  6. Harre M, Raddatz P, Walenta R, Winterfeldt E (1982) 4-Oxo-2-cyclopentenyl acetate—a synthetic intermediate. Angew Chem Int Ed Engl 21:480–492. https://doi.org/10.1002/anie.198204801

    Article  Google Scholar 

  7. Himeda Y, Yamataka H, Ueda I, Hatanaka M (1997) [3 + 2] annulation of allylidenetriphenylphosphorane with 1,2-diacylethylenes and 1,2-diacylacetylenes: a concerted synthesis of tri- and tetrasubstituted cyclopentadienes and fulvenes. J Org Chem 62:6529–6653. https://doi.org/10.1021/jo970594x8

    Article  CAS  Google Scholar 

  8. Nair V, Nair AG Radhakrishnan VM, Nadakumar V, Rath NP (1997) Diels-Alder reactions of a 6-arenyl fulvene participating both as diene and dienophile. Synlett:767–768. https://doi.org/10.1055/s-1997-5763

  9. Gupta YN, Doa MJ, Houk KN (1982) Intramolecular [6 + 4] cycloaddition: intramolecular control of periselectivity. J Am Chem Soc 104:7336–7338. https://doi.org/10.1021/ja00389a083

    Article  CAS  Google Scholar 

  10. Suda M, Hafner K (1977) Chemical reactivity of pentalene derivatives. Tetrahedron Lett 18:2453–2456. https://doi.org/10.1016/S0040-4039(01)83791-6

    Article  Google Scholar 

  11. Wu TC, Houk KN (1985) Construction of linear-fused tricyclopentanoids by intramolecular [6 + 2] cycloadditions of fulvenes with enamines. J Am Chem Soc 107:5308–5309. https://doi.org/10.1021/ja00304a065

    Article  CAS  Google Scholar 

  12. Gleiter R, Borzyk O (1995) Synthesis of rodlike distellenes. Angew Chem Int Ed Engl 34:1001–1003. https://doi.org/10.1002/anie.199510011

    Article  CAS  Google Scholar 

  13. Hong BC, Sun SS, Tsai YC (1997) Metal-mediated [6 + 3] cycloaddition reactions of fulvenes. A novel approach to Indan systems. J Org Chem 62:7717–7725. https://doi.org/10.1021/jo970984j

    Article  CAS  Google Scholar 

  14. Nair V, Mathew B (2000) Hetero Diels–Alder reactions of o-thioquinones with pentafulvenes: efficient synthesis of novel benzoxathiins. Tetrahedron Lett 41:6919–6921. https://doi.org/10.1016/S0040-4039(00)01146-1

    Article  CAS  Google Scholar 

  15. Öcal N, Bağdatli E, Arslan M (2005) Diels-Alder reactions of new methoxysubstituted-6-arylfulvenes. Turk J Chem 29:7–16

    Google Scholar 

  16. Hong BC, Gupta AK, Wu MF, Liao JH (2004) Formal [6 + 3] cycloaddition of fulvenes with 2H-azirine: a facile approach to the [2]pyrindines system. Tetrahedron Lett 45:1663–1666. https://doi.org/10.1016/j.tetlet.2003.12.105

    Article  CAS  Google Scholar 

  17. Sasaki T, Kanematsu K, Kataoka T (1973) Molecular design by cycloaddition reactions. XI. Cycloaddition of tropone and diphenylfulvene. Chem Lett 2:1183–1184. https://doi.org/10.1246/cl.1973.1183

    Article  Google Scholar 

  18. Houk KN, Luskus LJ, Bhacca NS (1970) Novel double [6 + 4] cycloaddition of tropone to dimethylfulvene. J Am Chem Soc 92:6392–6394. https://doi.org/10.1021/ja00724a077

    Article  CAS  Google Scholar 

  19. Kanematsu K, lizuka K (1975) Observation of regioselectivity in cycloaddition reaction of oxabenzonorbornadiene with 1,3-diphenylisobenzofuran. Heterocycles 3:109–112. https://doi.org/10.3987/R-1975-02-0109

    Article  Google Scholar 

  20. Nair V, Kumar S, Anilkumar G, Nair JS (1995) Diels-alder reactions of o-benzoquinones with 6-substituted fulvenes: facile synthesis of 1-aryl and 1,1-diarylmethylene-4,7-ethanoindene-8,9-diones 1. Tetrahedron 51:9155–9156. https://doi.org/10.1016/0040-4020(95)00512-7

    Article  CAS  Google Scholar 

  21. Nair V, Kumar S, Anilkumar G, Radhakrishnan KV, Sheela KC, Rath P (1997) Diels-Alder reactions of a 6-arenyl fulvene with dienes and dienophiles and related chemistry. Tetrahedron 53:17361–17372. https://doi.org/10.1016/S0040-4020(97)10160-0

    Article  CAS  Google Scholar 

  22. Houk KN, Sims J, Watts CR, Luskus LJ (1973) Origin of reactivity, regioselectivity, and periselectivity in 1,3-dipolar cycloadditions. J Am Chem Soc 95:7301–7315. https://doi.org/10.1021/ja00803a018

    Article  CAS  Google Scholar 

  23. Sustmann R (1971) A simple model for substituent effects in cycloaddition reactions. I. 1,3-dipolar cycloadditions. Tetrahedron Lett 12:2717–2721. https://doi.org/10.1016/S0040-4039(01)96961-8

    Article  Google Scholar 

  24. Paddon-Row MN, Watson PL, Warrener RN (1973) Application of PMO theory to the problem of perispecificity in cross-conjugated systems with special attention to the isobenzofulvene nucleus. Tetrahedron Lett:1033–1036. https://doi.org/10.1016/S0040-4039(01)95897-6

  25. Epiotis ND (1973) Configuration interaction and organic reactivity. IV. Concepts and generalizations. J Am Chem Soc 95:1214–1217. https://doi.org/10.1021/ja00785a601

    Article  CAS  Google Scholar 

  26. Sasaki T, Kanematsu K, Kataokaalashti T (1975) Molecular design by cycloaddition reactions. XXI. Periselectivity of reactions of fulvenes with heterodienes and heterodienophiles. J Org Chem 40:1201–1205. https://doi.org/10.1021/jo00897a004

    Article  CAS  Google Scholar 

  27. Domingo LR (2014) A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv 4:32415–32428. https://doi.org/10.1039/C4RA04280H

    Article  CAS  Google Scholar 

  28. Domingo LR, Sáeza JA (2009) Understanding the mechanism of polar Diels–Alder reactions. Org Biomol Chem 7:3576–3583. https://doi.org/10.1039/B909611F

    Article  CAS  PubMed  Google Scholar 

  29. Rhyman L, Ramasami P, Joule JA, Sáeza JA, Domingo LR (2013) Understanding the formation of [3 + 2] and [2 + 4] cycloadducts in the Lewis acid catalysed reaction between methyl glyoxylate oxime and cyclopentadiene: a theoretical study. RSC Adv 3:447–457. https://doi.org/10.1039/C2RA22332E

    Article  CAS  Google Scholar 

  30. Houk KN, Gonzalez J, Li Y (1995) Pericyclic reaction transition states: passions and punctilios, 1935-1995. Acc Chem Res 28:81–90. https://doi.org/10.1021/ar00050a004

    Article  CAS  Google Scholar 

  31. Domingo LR, Aurell MJ, Pérez P (2014) A DFT analysis of the participation of zwitterionic TACs in polar [3+2] cycloaddition reactions. Tetrahedron 70:4519–4525. https://doi.org/10.1016/j.tet.2014.05.003

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JAJ, Start-mann RE, Burant JC, Daprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochtersk JI, Petersson GA, Ayala Y, Ui QC, Morokuma K, Malick DK, Rubuck AD, Raghavachari K, Foresman JB, Cioslowski J, Oritz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Comperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challa-combe M, Gill MW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09 revision A.02. Gaussian, Inc, Wallingford

    Google Scholar 

  33. Hehre WJ, Radom L, PVR S, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  34. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094. https://doi.org/10.1021/cr00031a013

    Article  CAS  Google Scholar 

  35. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model. J Chem Phys 107:3032–3041. https://doi.org/10.1063/1.474659

    Article  CAS  Google Scholar 

  36. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  37. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  38. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  39. Parr RG, Yang W (1989) Density functional theory of atoms, molecules. Oxford University Press, New York

    Google Scholar 

  40. Domingo LR, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A Theoretical Study J Org Chem 73:4615–4624. https://doi.org/10.1021/jo800572a

    Article  CAS  PubMed  Google Scholar 

  41. Pérez P, Domingo LR, Duque-Noreña M, Chamorro E (2009) A condensed-to-atom nucleophilicity index an application to the director effects on the electrophilic aromatic substitutions. J Mol Struct 895:86–91. https://doi.org/10.1016/j.theochem.2008.10.014

    Article  CAS  Google Scholar 

  42. Domingo LR, Pérez P, Saez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3:1486–1494. https://doi.org/10.1039/C2RA22886F

    Article  CAS  Google Scholar 

  43. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  44. Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701–728. https://doi.org/10.1146/annurev.pc.46.100195.003413

    Article  CAS  PubMed  Google Scholar 

  45. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154. https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1

    Article  CAS  Google Scholar 

  46. Ess DH, Jones GO, Houk KN (2006) Conceptual, qualitative, and quantitative theories of 1,3-dipolar and Diels–Alder cycloadditions used in synthesis. Adv Synth Catal 348:2337–2361. https://doi.org/10.1002/adsc.200600431

    Article  CAS  Google Scholar 

  47. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Ald reactions. Tetrahedron 58:4417–4423. https://doi.org/10.1016/S0040-4020(02)00410-6

    Article  CAS  Google Scholar 

  48. Jaramillo P, Domingo LR, Chamorro E, Pérez PJ (2008) A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J Mol Struct 865:68–72. https://doi.org/10.1016/j.theochem.2008.06.022

    Article  CAS  Google Scholar 

  49. Domingo LR, Pérez P (2011) The nucleophilicity N index in organic chemistry. Org Biomol Chem 9:7168–7175. https://doi.org/10.1039/C1OB05856H

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Dr. Louise S. Price, University College London, UK, for reading the manuscript and providing valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Haghdadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical responsibilities of authors

We warranty that this manuscript is original, that this has been written by the stated authors, and that this has not been published elsewhere; the manuscript has not been submitted to more than one journal for simultaneous consideration.

We wish to confirm that it has not been published previously (partly or in full). This study is not split-up into several parts. We confirm that no data have been fabricated or manipulated. No data, text, or theories by others are presented as if they were the authors property. This manuscript contains no libelous or other unlawful statements and does not contain any materials that violate any personal or proprietary rights of any other person or entity.

Electronic supplementary material

ESM 1

(DOCX 448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghdadi, M., Alashti, M. & Bosra, H.G. A theoretical investigation on the mechanism of cycloaddition reactions of fulvenes with tetrazine and diazacyclopentadienone derivatives. Struct Chem 29, 1511–1523 (2018). https://doi.org/10.1007/s11224-018-1138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1138-9

Keywords

Navigation