Advertisement

Structural Chemistry

, Volume 29, Issue 6, pp 1609–1622 | Cite as

Investigation of indirubin derivatives: a combination of 3D-QSAR, molecular docking, and ADMET towards the design of new DRAK2 inhibitors

  • Adnane Aouidate
  • Adib Ghaleb
  • Mounir Ghamali
  • Samir Chtita
  • Abdellah Ousaa
  • M’barek Choukrad
  • Abdelouahid Sbai
  • Mohammed Bouachrine
  • Tahar Lakhlifi
Original Research

Abstract

Kinase-related apoptosis-inducing kinase 2 (DRAK2) is a serine/threonine kinase and belongs to the death-associated protein kinase DPAK family, which is responsible for induction of apoptosis in many cell types. Thus, DRAK2 is regarded as a promising target for treatment of autoimmune diseases. To investigate the binding between DRAK2 and indirubin inhibitors and design potent inhibitors, a three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking were performed. Comparative Molecular Similarity Indices Analysis (CoMSIA) was developed using 33 molecules having pIC50 ranging from 8.523 to 5.000 (IC50 in nM). The best CoMSIA model gave a significant coefficient of determination (R2 = 0.93), as well as a (leave-one-out cross-validation coefficient Q2 of 0.81. The predictive ability of this model was evaluated by external validation using a test set of eight compounds and yielded a predicted coefficient of determination R2test of 0.94. The contour maps could provide structural features to improve inhibitory activity. Good consistency between contour maps and molecular docking strongly suggests that the molecular modeling is reliable. Based on these satisfactory results, we designed several new DRAK2 inhibitors and their inhibitory activities were predicted using different models, which are developed on different training and test sets. Additionally, these newly designed inhibitors showed promising results in the preliminary in silico ADMET evaluations compared to the best inhibitor from the studied dataset. This study could be useful in lead identification and optimization for early drug discovery of DRAK2 inhibitors.

Keywords

QSAR Molecular docking DRAK2 Drug design Indirubin In silico ADMET 

Notes

Acknowledgments

We are grateful to the “Association Marocaine des Chimistes Théoriciens” (AMCT) and “Moroccan Centre of Scientific and Technique research” (CNRST) for their pertinent help concerning the programs.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Sanjo H, Kawai T, Akira S (1998) DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. J Biol Chem 273:29066–29071CrossRefGoogle Scholar
  2. 2.
    McGargill MA, Wen BG, Walsh CM, Hedrick SM (2004) A deficiency in Drak2 results in a T cell hypersensitivity and an unexpected resistance to autoimmunity. Immunity 21:781–791.  https://doi.org/10.1016/j.immuni.2004.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    MA MG, Choy C, Wen BG, Hedrick SM (2008) Drak2 regulates the survival of activated T cells and is required for organ-specific autoimmune disease. J Immunol 181:7593–7605.  https://doi.org/10.4049/jimmunol.181.11.7593 CrossRefGoogle Scholar
  4. 4.
    Weist BM, Hernandez JB, Walsh CM (2012) Loss of DRAK2 signaling enhances allogeneic transplant survival by limiting effector and memory T cell responses. Am J Transplant 12:2220–2227.  https://doi.org/10.1111/j.1600-6143.2012.04056.x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ramos SJ, Hernandez JB, Gatzka M, Walsh CM (2008) Enhanced T cell apoptosis within Drak2-deficient mice promotes resistance to autoimmunity. J Immunol 181:7606–7616CrossRefGoogle Scholar
  6. 6.
    Leonczak P, Gao LJ, Ramadori AT et al (2014) Synthesis and structure-activity relationship studies of 2-(1,3,4-oxadiazole-2(3H)-thione)-3-amino-5-arylthieno[2,3-b]pyridines as inhibitors of DRAK2. ChemMedChem 9:2587–2601.  https://doi.org/10.1002/cmdc.201402234 CrossRefPubMedGoogle Scholar
  7. 7.
    Wang S, Xu L, Lu YT et al (2017) Discovery of benzofuran-3(2H)-one derivatives as novel DRAK2 inhibitors that protect islet β-cells from apoptosis. Eur J Med Chem 130:195–208.  https://doi.org/10.1016/j.ejmech.2017.02.048 CrossRefPubMedGoogle Scholar
  8. 8.
    Eun M, Jin B, Kim H et al (2016) Bioorganic & Medicinal Chemistry Letters Discovery of indirubin derivatives as new class of DRAK2 inhibitors from high throughput screening. Bioorg Med Chem Lett 26:2719–2723.  https://doi.org/10.1016/j.bmcl.2016.03.111 CrossRefGoogle Scholar
  9. 9.
    Jain AN (2007) Surflex-dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21:281–306.  https://doi.org/10.1007/s10822-007-9114-2 CrossRefGoogle Scholar
  10. 10.
    Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511.  https://doi.org/10.1021/jm020406h CrossRefPubMedGoogle Scholar
  11. 11.
    Wang J, Kollman PA, Kuntz ID (1999) Flexible ligand docking: a multistep strategy approach. Proteins 36:1–19CrossRefGoogle Scholar
  12. 12.
    Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146.  https://doi.org/10.1021/jm00050a010 CrossRefPubMedGoogle Scholar
  13. 13.
    Gupta SP, Mathur AN, Nagappa AN et al (2003) A quantitative structure-activity relationship study on a novel class of calcium-entry blockers: 1-[(4-(aminoalkoxy)phenyl)sulphonyl]indolizines. Eur J Med Chem 38:867–873CrossRefGoogle Scholar
  14. 14.
    Roy PP, Paul S, Mitra I, Roy K (2009) Models. 1660–1701. doi:  https://doi.org/10.3390/molecules14051660 CrossRefGoogle Scholar
  15. 15.
    Clark M, Cramer RD, Van Opdenbosch N (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10:982–1012.  https://doi.org/10.1002/jcc.540100804 CrossRefGoogle Scholar
  16. 16.
    Purcell WP, Singer JA (1967) A brief review and table of semiempirical parameters used in the Hueckel molecular orbital method. J Chem Eng Data 12:235–246.  https://doi.org/10.1021/je60033a020 CrossRefGoogle Scholar
  17. 17.
    Zheng J, Xiao G, Guo J et al (2011) Exploring QSARs for 5-lipoxygenase (5-LO) inhibitory activity of 2-substituted 5-hydroxyindole-3-carboxylates by CoMFA and CoMSIA. Chem Biol Drug Des 78:314–321.  https://doi.org/10.1111/j.1747-0285.2011.01146.x CrossRefPubMedGoogle Scholar
  18. 18.
    Wold S (1991) Validation of QSAR’s. Quant Struct Relationships 10:191–193.  https://doi.org/10.1002/qsar.19910100302 CrossRefGoogle Scholar
  19. 19.
    Kubinyi H (2003) Comparative molecular field analysis (CoMFA). Handb Chemoinformatics:1555–1574.  https://doi.org/10.1002/9783527618279.ch44d CrossRefGoogle Scholar
  20. 20.
    Cruciani G, Baroni M, Clementi S et al (1992) Predictive ability of regression models. Part I: standard deviation of prediction errors (SDEP). J Chemom 6:335–346.  https://doi.org/10.1002/cem.1180060604 CrossRefGoogle Scholar
  21. 21.
    Baroni M, Clementi S, Cruciani G, Costantino G, Riganelli D, Oberrauch E (1992) Predictive ability of regression models. Part II: selection of the best predictive PLS model. J Chemom 6:347–356CrossRefGoogle Scholar
  22. 22.
    Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276.  https://doi.org/10.1016/S1093-3263(01)00123-1 CrossRefPubMedGoogle Scholar
  23. 23.
    Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16:357–369.  https://doi.org/10.1023/A:1020869118689 CrossRefGoogle Scholar
  24. 24.
    Rücker C, Rücker G, Meringer M (2007) Y-randomization and its variants in QSPR/QSAR. J Chem Inf Model 47:2345–2357.  https://doi.org/10.1021/ci700157b CrossRefPubMedGoogle Scholar
  25. 25.
    Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77.  https://doi.org/10.1002/qsar.200390007 CrossRefGoogle Scholar
  26. 26.
    Dassault Systèmes BIOVIA Discovery Studio Modeling Environment.Google Scholar
  27. 27.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN (2000) PEB. The Protein Data Bank 28:235–242Google Scholar
  28. 28.
    Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717.  https://doi.org/10.1038/srep42717 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hickey JP, Passino-reader DR (1991) Linear solvation energy relationships: “rules of thumb” for estimation of variable values 25:1753–1760Google Scholar
  30. 30.
    Gupta P, Garg P, Roy N (2012) Identification of novel HIV-1 integrase inhibitors using shape-based screening, QSAR, and docking approach. Chem Biol Drug Des 79:835–849.  https://doi.org/10.1111/j.1747-0285.2012.01326.x CrossRefPubMedGoogle Scholar
  31. 31.
    Matthews DJ, Gerritsen ME (2010) Targeting protein kinases for cancer therapy. John Wiley & Sons, HobokenGoogle Scholar
  32. 32.
    Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341.  https://doi.org/10.1016/j.ddtec.2004.11.007 CrossRefPubMedGoogle Scholar
  33. 33.
    Pires DE V, Blundell TL, Ascher DB pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. doi:  https://doi.org/10.1021/acs.jmedchem.5b00104 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adnane Aouidate
    • 1
  • Adib Ghaleb
    • 1
  • Mounir Ghamali
    • 1
  • Samir Chtita
    • 1
  • Abdellah Ousaa
    • 1
  • M’barek Choukrad
    • 1
  • Abdelouahid Sbai
    • 1
  • Mohammed Bouachrine
    • 2
  • Tahar Lakhlifi
    • 1
  1. 1.MCNSL, School of SciencesMoulay Ismail UniversityMeknesMorocco
  2. 2.High School of TechnologyMoulay Ismail UniversityMeknesMorocco

Personalised recommendations