Structural Chemistry

, Volume 29, Issue 5, pp 1255–1263 | Cite as

Mutual interplay between pnicogen–π and tetrel bond in PF3⊥X–Pyr…SiH3CN complexes: NMR, SAPT, AIM, NBO, and MEP analysis

  • Alireza Gholipour
Original Research


The mutual interplay between pnicogen–π and tetrel bond in the formation of PF3⊥X–Pyr…SiH3CN ternary complexes has been investigated via a computational chemistry at MP2/aug-cc-pVDZ level of theory. We proved by computational NMR data the effect of electron-withdrawing and electron-donating substituents on 1tJ(N-Si) across 15N...35Si tetrel bonds was investigated at M06-2X/aug-cc-pVDZ levels of theory in PF3⊥CN–Pyr…SiH3CN complex. The nature of the interactions has been studied by means of symmetry-adapted perturbation theory (SAPT) and molecular electrostatic potentials (MEP). The electrostatic interaction played a major role in the change of tetrel bond interaction strength in the X–Pyr…SiH3CN binary systems, whereas the change of pnicogen–π strength in the PF3⊥X–Pyr complexes was caused jointly by the dispersion interactions. Energy decomposition indicates that the percentage of the electrostatic term in the tetrel bond system constitutes in the total attractive binding energies, while the percentage of the dispersion term in the pnicogen bonding constitutes in the attractive binding energies. In addition, atoms in molecules (AIM) and natural bond orbital (NBO) analyses were also performed to unveil the mechanism of these interactions in the title complexes.


Pnicogen–π Tetrel bond Symmetry-adapted perturbation theory Molecular electrostatic potential 


  1. 1.
    Ramanathan N, Sankaran K, Sundararajan K (2016). Phys Chem Chem Phys 18:19350–19358CrossRefGoogle Scholar
  2. 2.
    Del Bene JE, Alkorta I, Elguero J (2015) In: Scheiner S (ed) Noncovalent Forces: Challenges and Advances in Computational Chemistry Challenges and Advances in Computational Chemistry and Physics. Springer, New York, pp 191–263Google Scholar
  3. 3.
    Politzer P, Murray JS, (2015) Noncovalent forces 19:291–321Google Scholar
  4. 4.
    McDowell SAC (2016). Chem Phys Lett 658:12–19CrossRefGoogle Scholar
  5. 5.
    Bauza A, Quinonero D, Deya PM, Frontera A (2012). Phys Chem Chem Phys 14:14061–14066CrossRefGoogle Scholar
  6. 6.
    Scheiner S (1997) Hydrogen bonding: A theoretical perspective. Oxford University Press, New YorkGoogle Scholar
  7. 7.
    Feng Y, Rainteau D, Chachaty C, Yu ZW, Wolf C, Quinn PJ (2004). Biophys J 86:2208–2217CrossRefGoogle Scholar
  8. 8.
    Mooibroek TJ, Gamez P, Reedijk J (2008). Cryst Eng Commun 10:1501–1515CrossRefGoogle Scholar
  9. 9.
    Klinkhammer KW, Pyykko P (1995). Inorg Chem 34:4134–4138CrossRefGoogle Scholar
  10. 10.
    Scheiner SA (2011). J Chem Phys 134:094315–094319CrossRefGoogle Scholar
  11. 11.
    Scheiner S (2011). J Phys Chem A 115:11202–11209CrossRefGoogle Scholar
  12. 12.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2012). J Phys Chem A 116:9205–9213CrossRefGoogle Scholar
  13. 13.
    Scheiner S (2012). Acc Chem Res 46:280–288CrossRefGoogle Scholar
  14. 14.
    Solimannejad M, Gholipour A (2013). Struct Chem 24:1705CrossRefGoogle Scholar
  15. 15.
    Solimannejad M, Gholipour A (2014). Phys Chem Res 2:1Google Scholar
  16. 16.
    Alkorta I, Elguero J, Del Bene JE (2015). Chem Phys Lett 641:84–89CrossRefGoogle Scholar
  17. 17.
    Politzer P, Murray JS, Peralta-Inga Z (2001). Int J Quantum Chem 85:676–684CrossRefGoogle Scholar
  18. 18.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011). Chem Eur J 17:6034–6038CrossRefGoogle Scholar
  19. 19.
    Scheiner S (2013). Int J Quantum Chem 113:1609–1620CrossRefGoogle Scholar
  20. 20.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011). Chem Phys Lett 512:184–187CrossRefGoogle Scholar
  21. 21.
    Liu C, Zeng Y, Li X, Meng L, Zhang X (2015). J Mol Model 21:143–155CrossRefGoogle Scholar
  22. 22.
    Tschirschwitz S, Lonnecke P, Hey-Hawkins E (2007). Dalton Trans 14:1377–1382CrossRefGoogle Scholar
  23. 23.
    Marr AC, Nieuwenhuyzen M, Pollock CL, Saunders GC (2007). Organometallics 26:2659–2671CrossRefGoogle Scholar
  24. 24.
    Ganesamoorthy C, Balkrishna SM, Mague JT, Tuononen HM (2008). Inorg Chem 47:7035–7047CrossRefGoogle Scholar
  25. 25.
    Avtomonov EV, Megges K, Wocadlo S, Lorberth J (1996). J Organomet Chem 524:253–261CrossRefGoogle Scholar
  26. 26.
    Bauer S, Tschirschwitz S, Lonnecke P, Frank R, Kirchner B, Clarke M L, Hey-Hawkins E (2009) Eur J Inorg Chem 2776–2788Google Scholar
  27. 27.
    Sarkar S, Pavan MS, Guru Row TN (2015). Phys Chem Chem Phys 17:2330–2334CrossRefGoogle Scholar
  28. 28.
    Joshi PR, Ramanathan N, Sundararajan K, Sankaran K (2015). J Phys Chem A 119:3440–3451CrossRefGoogle Scholar
  29. 29.
    Bauza A, Mooibroek TJ, Frontera A (2013). Angew Chem Int Ed 52:12317–12321CrossRefGoogle Scholar
  30. 30.
    Politzer P, Murray JS, Clark T (2013). Phys Chem Chem Phys 15:11178–11118CrossRefGoogle Scholar
  31. 31.
    Xu H, Cheng J, Yang X, Liu Z, Li W, Li Q (2017). Chem Phys Chem 18:2442–2450CrossRefGoogle Scholar
  32. 32.
    Yuanxin W, Li Q (2017). Mol Phys.
  33. 33.
    Li Q-Z, Zhu H-Y, Li H-B, Liu Z-B, Li W-Z, Cheng J-B (2015). J Phys Chem A 119:2217–2224CrossRefGoogle Scholar
  34. 34.
    Mani D, Arunan EJ (2014). Phys Chem A 118:10081–10089CrossRefGoogle Scholar
  35. 35.
    Lu Y, Wang Y, Zhu W (2010). Phys Chem Chem Phys 12:4543–4551CrossRefGoogle Scholar
  36. 36.
    Thomas SP, Pavan MS, Guru Row TN (2014). Chem Commun 50:49–51CrossRefGoogle Scholar
  37. 37.
    Liu M-X, Zhuo H-Y, Li Q-Z, Cheng J-B, Li W-Z (2016). J Mol Model 22:10–17CrossRefGoogle Scholar
  38. 38.
    Guo X, Liu YW, Li QZ, Li WZ, Cheng JB (2015). Chem Phys Lett 620:7–12CrossRefGoogle Scholar
  39. 39.
    Wei QC, Li QZ, Cheng JB, Li WZ, Li HB (2016). RSC Adv 6:79245–79253CrossRefGoogle Scholar
  40. 40.
    Jeziorski B, Moszynski R, Szalewicz K (1994). Chem Rev 94:1887CrossRefGoogle Scholar
  41. 41.
    Bader RFW (1990) Atom in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  42. 42.
    Reed AE, Curtiss LA, Weinhold F (1998). Chem Rev 88:899CrossRefGoogle Scholar
  43. 43.
    Boys SB, Bernardi F (1970). Mol Phys 19:553–566CrossRefGoogle Scholar
  44. 44.
    Schmidt MW, Baldridge KK, Boat JA, Elbert ST, Gordon, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgo Mery JA (1993). J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  45. 45.
    Tkatchenko A, DiStasio RA, Gordon MH, Scheffler M (2009). J Chem Phys 131:094106–1–094106–7Google Scholar
  46. 46.
    Fanfrlik J, Svec P, Ruzickova Z, Hnyk D, Ruzicka A, Hobza P (2017). Crystals 7:225CrossRefGoogle Scholar
  47. 47.
    Ramsey NF (1950). Phys Rev 78:699CrossRefGoogle Scholar
  48. 48.
    Ramsey NF (1953). Phys Rev 91:303CrossRefGoogle Scholar
  49. 49.
    Bukowski R, Cencek W, Jankowski P et al (2012) An Ab Initio program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies. Sequential and Parallel Versions, University of Delaware, NewarkGoogle Scholar
  50. 50.
    Biegler Konig FW, Schonbohm J, Bayles D, AIM (2000). J Comput Chem 22(2001):545Google Scholar
  51. 51.
    Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010). J Mol Model 16:1679–1691CrossRefGoogle Scholar
  52. 52.
    Zhu W, Tan X, Shen J, Luo X, Cheng F, Mok PC, Ji R, Chen K, Jiang H (2003). J Phys Chem A 107:2296CrossRefGoogle Scholar
  53. 53.
    Ghafari S, Gholipour A (2015). J Mol Model 21:253CrossRefGoogle Scholar
  54. 54.
    Ebrahimi A, Habibi M, Neyband RS, Gholipour AR (2009). Phys Chem Chem Phys 11:11424CrossRefGoogle Scholar
  55. 55.
    Politzer P, Murray JS, Clark T (2010). Phys Chem Chem Phys 12:7748CrossRefGoogle Scholar
  56. 56.
    Murray JS, Riley AKE, Politzer P, Clark T (2010). J Chem 63:159Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceLorestan UniversityKhorramabadIran

Personalised recommendations