Quantitative relationships between bond lengths, stretching vibrational frequencies, bond force constants, and bond orders in the hydrogen-bonded complexes involving hydrogen halides

  • Fan Yang
  • Rui-Zhi Wu
  • Chao-Xian Yan
  • Xing Yang
  • Da-Gang Zhou
  • Pan-Pan Zhou
Original Research
  • 63 Downloads

Abstract

To uncover the correlation between the bond length change and the corresponding stretching frequency shift of the proton donor D–H upon hydrogen bond formation, a series of hydrogen-bonded complexes involving HF and HCl which exhibit the characteristics of red-shifted hydrogen bond were investigated at the MP2/aug-cc-pVTZ, M062X/aug-cc-pVTZ, and B3LYP/aug-cc-pVTZ(GD3) levels of theory with CP optimizations. A statistical analysis of these complexes leads to the quantitative illustrations of the relations between bond length and stretching vibrational frequency, between bond length and bond force constant, between stretching vibrational frequency and bond force constant, between bond length and bond order for hydrohalides in a mathematical way, which would provide valuable insights into the explanation of the geometrical and spectroscopic behaviors during hydrogen bond formation.

Keywords

Hydrogen bond Bond length Stretching vibrational frequency Bond force constant Bond order 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2017_1048_MOESM1_ESM.docx (109 kb)
ESM 1 (DOCX 109 kb)

References

  1. 1.
    Desiraju GR, Steiner T (1999) Oxford, Oxford University PressGoogle Scholar
  2. 2.
    Jeffrey GA (1997) New York, Oxford University PressGoogle Scholar
  3. 3.
    Kryachko ES (2006) Dordrecht, SpringerGoogle Scholar
  4. 4.
    Scheiner S (1997) New York, Oxford University PressGoogle Scholar
  5. 5.
    Hobza P, Havlas Z (2000). Chem Rev 100:4253–4264CrossRefGoogle Scholar
  6. 6.
    Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003). J Am Chem Soc 125:5973–5987CrossRefGoogle Scholar
  7. 7.
    Gu Y, Kar T, Scheiner S (1999). J Am Chem Soc 121:9411–9422CrossRefGoogle Scholar
  8. 8.
    Hobza P (2001). Phys Chem Chem Phys 3:2555–2556CrossRefGoogle Scholar
  9. 9.
    Hobza P (2002). Int J Quantum Chem 90:1071–1074CrossRefGoogle Scholar
  10. 10.
    Hobza P, Havlas Z (1999). Chem Phys Lett 303:447–452CrossRefGoogle Scholar
  11. 11.
    Hobza P, Havlas Z (2002). Theor Chem Accounts 108:325CrossRefGoogle Scholar
  12. 12.
    Hobza P, Spirko V, Havlas Z, Buchhold K, Reimann B, Barth H-D, et al. (1999). Chem Phys Lett 299:180–186CrossRefGoogle Scholar
  13. 13.
    Hobza P, Spirko V, Selzel HL, Schlag EW (1998). J Phys Chem A 102:2501–2504CrossRefGoogle Scholar
  14. 14.
    Li AY (2007). J Chem Phys 126:154102CrossRefGoogle Scholar
  15. 15.
    Liu Y (2008). Int J Quantum Chem 108:1123–1129CrossRefGoogle Scholar
  16. 16.
    Liu Y, Liu W, Yang Y, Liu J (2006). Int J Quantum Chem 106:2122–2128CrossRefGoogle Scholar
  17. 17.
    Lu P, Liu G-Q, Li J-C (2005). J Mol Struct (THEOCHEM) 723:95–100Google Scholar
  18. 18.
    McDowell SAC (2003). Phys Chem Chem Phys 5:808–811CrossRefGoogle Scholar
  19. 19.
    McDowell SAC (2008). J Comput Chem 29:298–305CrossRefGoogle Scholar
  20. 20.
    McDowell SAC, Buckingham AD (2005). J Am Chem Soc 127:15515–15520CrossRefGoogle Scholar
  21. 21.
    Scheiner S (2011). Phys Chem Chem Phys 13:13860–13872CrossRefGoogle Scholar
  22. 22.
    Spirko V, Hobza P (2006). ChemPhysChem 7:640–643CrossRefGoogle Scholar
  23. 23.
    Wang W, Hobza P (2008). Collect Czechoslov Chem Commun 73:862–872CrossRefGoogle Scholar
  24. 24.
    Yang Y, Zhang W, Gao X (2006). Int J Quantum Chem 106:1199–1207CrossRefGoogle Scholar
  25. 25.
    Yang Y, Zhang W, Pei S, Shao J, Huang W, Gao X (2005). J Mol Struct (THEOCHEM) 732:33–37CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Ma N, Wang W-Z (2012). Acta Phys -Chim Sin 28:499–503CrossRefGoogle Scholar
  27. 27.
    Zhou P-P, Qiu W-Y (2009). ChemPhysChem 10:1847–1858CrossRefGoogle Scholar
  28. 28.
    Zhou P-P, Qiu W-Y (2009). J Phys Chem A 113:10306–10320CrossRefGoogle Scholar
  29. 29.
    Lu X, Shi H, Chen J, Ji D (2012). Comput Theor Chem 982:34–39CrossRefGoogle Scholar
  30. 30.
    McDowell SAC (2003). J Mol Struct (THEOCHEM) 625:243–250CrossRefGoogle Scholar
  31. 31.
    Zhang G, Ji A, Chen D (2008). J Mol Struct (THEOCHEM) 853:89–96CrossRefGoogle Scholar
  32. 32.
    Karpfen A (2004). J Mol Struct (THEOCHEM) 710:85–95CrossRefGoogle Scholar
  33. 33.
    Chocholousova J, Spirko V, Hobza P (2004). Phys Chem Chem Phys 6:37–41CrossRefGoogle Scholar
  34. 34.
    Cubero E, Orozco M, Hobza P, Luque FJ (1999). J Phys Chem A 103:6394–6401CrossRefGoogle Scholar
  35. 35.
    Karpfen A (2011). Phys Chem Chem Phys 13:14194–14201CrossRefGoogle Scholar
  36. 36.
    Karpfen A, Kryachko ES (2005). J Phys Chem A 109:8930–8937CrossRefGoogle Scholar
  37. 37.
    Karpfen A, Kryachko ES (2006). Chem Phys Lett 431:428–433CrossRefGoogle Scholar
  38. 38.
    Karpfen A, Kryachko ES (2007). J Phys Chem A 111:8177–8187CrossRefGoogle Scholar
  39. 39.
    Kryachko ES, Karpfen A (2006). Chem Phys 329:313–328CrossRefGoogle Scholar
  40. 40.
    Li AY (2006). J Phys Chem A 110:10805–10816CrossRefGoogle Scholar
  41. 41.
    Li X, Liu L, Schlegel HB (2002). J Am Chem Soc 124:9639–9647CrossRefGoogle Scholar
  42. 42.
    Pluhackova K, Hobza P (2007). ChemPhysChem 8:1352–1356CrossRefGoogle Scholar
  43. 43.
    Qian W, Krimm S (2002). J Phys Chem A 106:11663–11671CrossRefGoogle Scholar
  44. 44.
    Qian W, Krimm S (2002). J Phys Chem A 106:6628–6636CrossRefGoogle Scholar
  45. 45.
    Qian W, Krimm S (2005). J Phys Chem A 109:5608–5618CrossRefGoogle Scholar
  46. 46.
    Reimann B, Buchhold K, Vaupel S, Brutschy B, Havlas Z, Spirko V, et al. (2001). J Phys Chem A 105:5560–5566CrossRefGoogle Scholar
  47. 47.
    van der Veken BJ, Herrebout WA, Szostak R, Shchepkin DN, Havlas Z, Hobza P (2001). J Am Chem Soc 123:12290–12293CrossRefGoogle Scholar
  48. 48.
    Zierkiewicz W, Jurecka P, Hobza P (2005). ChemPhysChem 6:609–617CrossRefGoogle Scholar
  49. 49.
    Zierkiewicz W, Michalska D, Havlas Z, Hobza P (2002). ChemPhysChem 3:511–518CrossRefGoogle Scholar
  50. 50.
    Zhou PP, Qiu WY, Jin NZ (2012). J Chem Phys 137:084311CrossRefGoogle Scholar
  51. 51.
    Hill FC, Gibbs GV, Boisen MB (1994). Struct Chem 5:349–355CrossRefGoogle Scholar
  52. 52.
    Clark CHD (1935). Philos Mag 19:477CrossRefGoogle Scholar
  53. 53.
    Gibbs GV, D'Arco P, Boisen MB (1987). J Phys Chem 91:5347–5354CrossRefGoogle Scholar
  54. 54.
    Silverstein RM, Webster FX, Kiemle D, Bryce DL (2014) 8th Edition ed. New York, Wiley InterscienceGoogle Scholar
  55. 55.
    Brown ID, Altermatt D (1985). Sect B 41:244–247Google Scholar
  56. 56.
    Aakeröy CB, Fasulo M, Schultheiss N, Desper J, Moore C (2007). J Am Chem Soc 129:13772–13773CrossRefGoogle Scholar
  57. 57.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HR, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JRJ, Peralta A, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, Google Scholar
  58. 58.
    Zhao Y, Schultz NE, Truhlar DG (2006). J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  59. 59.
    Zhao Y, Truhlar DG (2006). J Chem Phys 125:194101CrossRefGoogle Scholar
  60. 60.
    Zhao Y, Truhlar DG (2007). J Chem Theory Comput 3:289–300CrossRefGoogle Scholar
  61. 61.
    Zhao Y, Truhlar DG (2008). Acc Chem Res 41:157–167CrossRefGoogle Scholar
  62. 62.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789CrossRefGoogle Scholar
  63. 63.
    Becke AD (1993). J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  64. 64.
    Zhou PP, Qiu WY, Liu S, Jin NZ (2011). Phys Chem Chem Phys 13:7408–7418CrossRefGoogle Scholar
  65. 65.
    Hohenstein EG, Chill ST, Sherrill CD (2008). J Chem Theory Comput 4:1996–2000CrossRefGoogle Scholar
  66. 66.
    Mo O, Yanez M, Elguero J (1997). J Chem Phys 107:3592CrossRefGoogle Scholar
  67. 67.
    Dkhissi A, Adamowicz L, Maes G (2000). J Phys Chem A 104:2112–2119CrossRefGoogle Scholar
  68. 68.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010). J Chem Phys 132:154104–154119CrossRefGoogle Scholar
  69. 69.
    Brovarets' OO, Hovorun DM (2015). Phys Chem Chem Phys 15:15103–15110CrossRefGoogle Scholar
  70. 70.
    Brovarets' OO, Hovorun DM (2015). J Biomol Struct Dyn 33:2297–2315CrossRefGoogle Scholar
  71. 71.
    Brovarets' OO, Hovorun DM (2015). RSC Adv 5:99594–99605CrossRefGoogle Scholar
  72. 72.
    Boys SF, Bernardi F (1970). Mol Phys 19:553–566CrossRefGoogle Scholar
  73. 73.
    Rozenberg M, Loewenschuss A, Marcus Y (2000) Phys Chem Chem Phys 2:2699–2702.Google Scholar
  74. 74.
    Alkorta I, Rozas I, Mó O, Yanez M, Elguero J (2001) J Phys Chem A 105:7481–7485.Google Scholar
  75. 75.
    Andrews L, Wang X, Mielke Z (2001) J Am Chem Soc 123:1499–1500.Google Scholar
  76. 76.
    Chaban GM, Gerber RB, Janda KC (2001) J Phys Chem A 105:8323–8332.Google Scholar
  77. 77.
    Grabowski SJ (2004) J Phys Org Chem 17:18–31.Google Scholar
  78. 78.
    Ireta J, Neugebauer J, Scheffler M (2004) J Phys Chem A 108:5692–5698.Google Scholar
  79. 79.
    Kisiel Z, Pietrewicz BA, Fowler PW, Legon AC, Steiner E (2000) J Phys Chem A 104:6970–6978.Google Scholar
  80. 80.
    Re S (2001) J Phys Chem A 105:9725–9735.Google Scholar
  81. 81.
    NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 15b, August 2011, Editor: Russell D. Johnson III. https://cccbdb.nist.gov/
  82. 82.
    Andrews L, Wang X, Mielke Z (2001). J Am Chem Soc 123:1499–1500Google Scholar
  83. 83.
    Varshini YP (1958). J Chem Phys 28:1081–1088Google Scholar
  84. 84.
    Linnett JW (1945). Trans Faraday Soc 41:223–232Google Scholar
  85. 85.
    Politzer P, Habibollahzadeh D (1993). J Chem Phys 98:7659–7660Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations