Skip to main content
Log in

Influence of intrinsic and extrinsic factors on the antiradical activity of Gallic acid: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The factors responsible for the potent antioxidant activity of gallic acid (GA) are explored by employing density functional theory (DFT). It is found that the intrinsic characteristic features of the molecule play a significant role in its overall effectiveness as an antioxidant. The arrangement of the three hydroxyl groups with respect to each other imparts efficient antioxidant and antiradical property to GA. The external factors, such as polarity and pH of the reaction medium, also have a significant role to play. The polarity of the medium substantially affects the electron donating ability of GA, whereas the hydrogen atom donating ability is only marginally influenced. GA is a poor electron donor, but it can efficiently donate the hydrogen atom from its para hydroxyl group and effectively quench free radicals. It proves to be a better antiradical agent at the physiological pH, wherein it exists in the monoanionic form. Further, a comparison with other phenolic acids substantiates the importance of the carboxyl and hydroxyl groups in the antiradical activity of GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41:753–758

    Article  CAS  Google Scholar 

  2. Furuno K, Akasako T, Sugihara N (2002) The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids. Biol Pharm Bull 25:19–23

    Article  CAS  Google Scholar 

  3. Karamać M, Kosińska A, Pegg RB (2005) Comparison of radical-scavenging activities for selected phenolic acids. Pol J Food Nutr Sci 14(55):165–170

    Google Scholar 

  4. Siquet C, Paiva-Martins F, Lima JLFC, Reis S, Borges F (2006) Antioxidant profile of dihydroxy- and trihydroxyphenolic acids-a structure–activity relationship study. Free Radic Res 40:433–442

    Article  CAS  Google Scholar 

  5. Dwibedy P, Dey GR, Naik DB, Kishore K, Moorthy PN (1999) Pulse radiolysis studies on redox reactions of gallic acid: one electron oxidation of gallic acid by gallic acid-OH adduct. Phys Chem Chem Phys 1:1915–1918

    Article  CAS  Google Scholar 

  6. Masaki H, Atsumi T, Sakurai H (1994) Hamameli tannin as a new potent active oxygen scavenger. Phytochemistry 37:337–343

    Article  CAS  Google Scholar 

  7. Medina ME, Iuga C, Alvarez-Idaboy JR (2013) Antioxidant activity of propyl gallate in aqueous and lipid media: a theoretical study. Phys Chem Chem Phys 15:13137–13146

    Article  CAS  Google Scholar 

  8. Ribeiro T, Motta A, Marcus P, Gaigeot MP, Lopez X, Costa D (2013) Formation of the OOH• radical at steps of the boehmite surface and its inhibition by gallic acid: a theoretical study including DFT-based dynamics. J Inorg Biochem 128:164–173

    Article  CAS  Google Scholar 

  9. Sawa T, Nakao M, Akaike T, Ono K, Maeda H (1999) Alkylperoxyl radical scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables. J Agric Food Chem 47:397–402

    Article  CAS  Google Scholar 

  10. Schlesier K, Harwat M, Bohm V, Bitsch R (2002) Assessment of antioxidant activity by using different in vitro methods. Free Radic Res 36:177–187

    Article  CAS  Google Scholar 

  11. Marino T, Galano A, Russo N (2014) Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory. J Phys Chem B 118:10380–10389

    Article  CAS  Google Scholar 

  12. Sohi KK, Mittal N, Hundal MK, Khanduja KLJ (2003) Gallic acid, an antioxidant, exhibits antiapoptotic potential in normal human lymphocytes: a Bcl-2 independent mechanism. Nutr Sci Vitaminol 49:221–227

    Article  CAS  Google Scholar 

  13. Badhani B, Sharma N, Kakkar R (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv 5:27540–27557

    Article  CAS  Google Scholar 

  14. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  CAS  Google Scholar 

  15. Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922

    Article  CAS  Google Scholar 

  16. Šolc R, Gerzabek MH, Lischka H, Tunega D (2014) Radical sites in humic acids: a theoretical study on protocatechuic and gallic acids. Comp Theor Chem 1032:42–49

    Article  Google Scholar 

  17. Litwinienko G, Ingold KU (2007) Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc Chem Res 40:222–230

    Article  CAS  Google Scholar 

  18. Meo FD, Lemaur V, Cornil J, Lazzaroni R, Duroux JL, Olivier Y, Trouillas P (2013) Free radical scavenging by natural polyphenols: atom versus electron transfer. J Phys Chem A 117:2082–2092

    Article  Google Scholar 

  19. Nenadis N, Stavra K (2017) Effect of Cα−Cβ bond type on the radical scavenging activity of hydroxy stilbenes: theoretical insights in the gas and liquid phase. J Phys Chem A 121:2014–2021

    Article  CAS  Google Scholar 

  20. Rajan VK, Muraleedharan KA (2017) Computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, gallic acid. Food Chem 220:93–99

    Article  CAS  Google Scholar 

  21. van Wenum E, Jurczakowski R, Litwinienko G (2013) Media effects on the mechanism of antioxidant action of silybin and 2,3-dehydrosilybin: role of the enol group. J Org Chem 78:9102–9112

    Article  Google Scholar 

  22. Foti MC (2007) Antioxidant properties of phenols. J Pharm Pharmacol 59:1673–1685

    Article  CAS  Google Scholar 

  23. Foti MC, Amorati R (2009) Non-phenolic radical-trapping antioxidants. J Pharm Pharmacol 61:1435–1448

    Article  CAS  Google Scholar 

  24. Leon-Carmona JR, Alvarez-Idaboy JR, Galano A (2012) On the peroxyl scavenging activity of hydroxycinnamic acid derivatives: mechanisms, kinetics, and importance of the acid-base equilibrium. Phys Chem Chem Phys 14:12534–12543

    Article  CAS  Google Scholar 

  25. Litwinienko G, Ingold KU (2004) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 69:5888–5896

    Article  CAS  Google Scholar 

  26. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B: Condensed Matter and Materials Physics 37:785–789

    Article  CAS  Google Scholar 

  28. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford

  30. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  31. Crispo JAG, Piché M, Ansell DR, Eibl JK, Tai IT, Kumar A, Ross GM, Tai TC (2010) Protective effects of methyl gallate on H2O2-induced apoptosis in PC12 cells. Biochem Biophys Res Commun 393:773–778

    Article  CAS  Google Scholar 

  32. He Q, Song N, Jia F, Xu H, Yu X, Xie J, Jiang H (2013) Role of α-synuclein aggregation and the nuclear factor E2-related factor 2/heme oxygenase-1 pathway in iron-induced neurotoxicity. Int J Biochem Cell Biol 45:1019–1030

    Article  CAS  Google Scholar 

  33. Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122:456–468

    Article  CAS  Google Scholar 

  34. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  Google Scholar 

  35. Nordberg J, Arner EJ (2001) Reactive oxygen species, antioxidants, and the mammalian Thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  CAS  Google Scholar 

  36. Valko M, Leibfritz D, Moncola J, Cronin MT, Mazura M, Telser J (2007) Review free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  37. Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  38. Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8

    Article  CAS  Google Scholar 

  39. Catala A (2010) A synopsis of the process of lipid peroxidation since the discovery of essential fatty acids. Biochem Biophys Res Commun 399:318–323

    Article  CAS  Google Scholar 

  40. Salvador A, Sousa J, Pinto RE (2001) Hydroperoxyl, superoxide and pH gradients in the mitochondrial matrix: a theoretical assessment. Free Radic Biol Med 31:1208–1215

    Article  CAS  Google Scholar 

  41. Halliwell B (1995) How to characterize an antioxidant: an update. Biochem Soc Symp 61:73–101

    Article  CAS  Google Scholar 

  42. Cerruti PA (1985) Pro-oxidant states and tumor activation. Science 227:375–381

    Article  Google Scholar 

  43. Manahan SE (2002) Toxicological chemistry and biochemistry. CRC Press, Boca Raton, Florida

  44. Fukumoto J, Fukumoto I, Parthasarathy PT, Cox R, Huynh B, Ramanathan GK, Venugopal RB, Allen-Gipson DS, Lockey RF, Kolliputi N (2013) NLRP3 deletion protects from hyperoxia-induced acute lung injury. Am J Physiol Cell Physiol 305:C182–C189

    Article  CAS  Google Scholar 

  45. Stamler JS (1994) Redox signaling: Nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    Article  CAS  Google Scholar 

  46. Halliwell B (1994) Free radicals and antioxidants: a personal view. Nutr Rev 52:253–265

    Article  CAS  Google Scholar 

  47. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Phys 271:C1424–C1437

    Article  CAS  Google Scholar 

  48. Koppenol WH, Butler J (1985) Energetics of interconversion reactions of oxyradicals. Adv Free Radic Biol Med 1:91–131

    Article  CAS  Google Scholar 

  49. Smith JR, Kim JB, Lineberger WC (1997) High-resolution threshold photodetachment spectroscopy of OH¯. Phys Rev A 55:2036

    Article  CAS  Google Scholar 

  50. Ramond TM, Blanksby SJ, Kato S, Bierbaum VM, Davico GE, Schwartz RL, Lineberger WC, Ellison GB (2002) Heat of formation of the hydroperoxyl radical HOO via negative ion studies. J Phys Chem A 106:9641–9647

    Article  CAS  Google Scholar 

  51. Blanksby SJ, Ramond TM, Davico GE, Nimlos MR, Kato S, Bierbaum VM, Lineberger WC, Ellison GB, Okumura M (2001) Negative-ion photoelectron spectroscopy, gas-phase acidity, and thermochemistry of the peroxyl radicals CH3OO and CH3CH2OO. J Am Chem Soc 123:9585–9596

    Article  CAS  Google Scholar 

  52. Chen ECM, Wentworth WE (1983) Determination of molecular electron affinities using the electron capture detector in the pulse sampling mode at steady state. J Phys Chem 87:45–49

    Article  CAS  Google Scholar 

  53. Travers MJ, Cowles DC, Ellison GB (1989) Reinvestigation of the electron affinities of O2 and NO. Chem Phys Lett 164:449–455

    Article  CAS  Google Scholar 

  54. Velarde L, Habteyes T, Grumbling ER, Pichugin K, Sanov A (2007) Solvent resonance effect on the anisotropy of NO-(N2O)n cluster anion photodetachment. J Chem Phys 127:084302–084306

    Article  Google Scholar 

  55. Hughes MN (1999) Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim Biophys Acta 1411:263–272

    Article  CAS  Google Scholar 

  56. Domingo LR, Pérez P (2011) The Nucleophilicity N index in organic chemistry. Org Biomol Chem 9:7168–7175

    Article  CAS  Google Scholar 

  57. Domingo LR, Pérez P (2013) Global and local reactivity indices for electrophilic/nucleophilic free radicals. Org Biomol Chem 11:4350–4358

    Article  CAS  Google Scholar 

  58. Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615–4624

    Article  CAS  Google Scholar 

  59. Kakkar R, Bhandari M, Gaba R (2012) Tautomeric transformations and reactivity of alloxan. Comput Theor Chem 986:14–24

    Article  CAS  Google Scholar 

  60. Maynard AT, Huang M, Rice WG, Covell DG (1998) Reactivity of the HIV-1 nucleocapsid protein P7 zinc finger domains from the perspective of density-functional theory. Proc Natl Acad Sci 95:11578–11583

    Article  CAS  Google Scholar 

  61. Parr RG, von Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  62. Wu C, Hou X, Zheng Y, Li P, Lu D (2017) Electrophilicity and nucleophilicity of boryl radicals. J Org Chem 82:2898–2905

    Article  CAS  Google Scholar 

  63. Nenadis N, Sigalas MPA (2008) DFT study on the radical scavenging activity of maritimetin and related aurones. J Phys Chem A 112:12196–12202

    Article  CAS  Google Scholar 

  64. Badhani B, Kakkar R (2017) DFT study of structural and electronic properties of gallic acid and its anions in gas phase and in aqueous solution. Struct Chem. https://doi.org/10.1007/s11224-017-0958-3

  65. Đorović J, Marković JMD, Stepanić V, Begović N, Amić D, Marković Z (2014) Influence of different free radicals on scavenging potency of gallic acid. J Mol Model 20:2345–2354

    Article  Google Scholar 

  66. Filipović M, Marković Z, Đorović J, Marković JD, Lučić B, Amić D (2015) QSAR of the free radical scavenging potency of selected hydroxybenzoic acids and simple phenolics. C R Chimie 18:492–498

    Article  Google Scholar 

  67. Giacomelli C, Miranda FDS, Gonçalves NS, Spinelli A (2004) Antioxidant activity of phenolic and related compounds: a density functional theory study on the O–H bond dissociation enthalpy. Redox Rep 9:263–269

    Article  CAS  Google Scholar 

  68. Ji HF, Zhang HY, Shen L (2006) Proton dissociation is important to understanding structure–activity relationships of gallic acid antioxidants. Bioorg Med Chem Lett 16:4095–4098

    Article  CAS  Google Scholar 

  69. Belcastro M, Marino T, Ruusso N, Toscano M (2006) Structural and electronic characterization of antioxidants from marine organisms. Theor Chem Accounts 115:361–369

    Article  CAS  Google Scholar 

  70. Kakkar R, Bhandari M (2013) Theoretical investigation of the alloxan–dialuric acid redox cycle. Int J Quant Chem 113:2060–2069

    Article  CAS  Google Scholar 

  71. Kelly CP, Cramer CJ, Truhlar DG (2006) Aqueous solvation free energies of ions and ion−water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110:16066–16081

    Article  CAS  Google Scholar 

  72. Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV (1998) The proton's absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J Phys Chem A 102:7787–7794

    Article  CAS  Google Scholar 

  73. Merényi G, Lind J, Engman L (1994) One- and two-electron reduction potentials of peroxyl radicals and related species. J Chem Soc Perkin Trans 2:2551–2553

    Article  Google Scholar 

  74. Balentine DA, Wiseman SA, Bouwens LCM (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37:693–704

    Article  CAS  Google Scholar 

  75. Kortum G, Vogel W, Andrussow K (1961) Dissociation constants of organic acids in aqueous solution. Butterworth, International Union of Pure and Applied Chemistry, London

    Google Scholar 

  76. Serjeant EP, Dempsey B (1979) Ionization constants of organic acids in aqueous solution. Pergamon, Oxford

  77. Smith M, Martell E (1989) Critical stability constants, vol 6 (supplement section). Plenum Press, New York

    Book  Google Scholar 

  78. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (B.B.) thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for Senior Research Fellowship. The authors thank Delhi University’s “Scheme to Strengthen Doctoral Research by Providing Funds to Faculty.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Kakkar.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 858 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badhani, B., Kakkar, R. Influence of intrinsic and extrinsic factors on the antiradical activity of Gallic acid: a theoretical study. Struct Chem 29, 359–373 (2018). https://doi.org/10.1007/s11224-017-1033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1033-9

Keywords

Navigation